
Architecture for Agent Programming Languages
Koen Hindriks1 and Mark d’Inverno2 and Michael Luck3

Abstract.
As the field of agent-based systems continues to expand rapidly,

one of the most significant problems lies in being able to compare and
evaluate the relative benefits and disadvantages of different systems.
In part, this is due to the various different ways in which these sys-
tems are presented. One solution is to develop a set of architectural
building blocks that can be used as a basis for further construction
(to avoid re-inventing wheels), and to ensure a strong and effective,
yet simple and accessible, means of presentation that allows for com-
parison and analysis of agent systems. In this paper, we address this
issue in providing just such an architectural framework by using the
3APL agent programming language as a starting point for identifica-
tion and specification of more general individual agent components.
This provides three additional benefits: it moves the work further
down the road of implementation, contributes to a growing library
of agent techniques and features, and allows a detailed comparison
of different agent-based systems specified in similar ways.

1 Introduction

Among the most significant of the problems that face the dynamic
and rapidly-expanding field of agent-based systems is the drawing
together of disparate strands of work ostensibly aimed at addressing
the same issues. Indeed, the plethora of different agent theories, lan-
guages and architectures that have been proposed and developed in
recent years highlights this particular problem. The “so what” reac-
tion is one that is undeserved by many of the efforts that receive it,
but is in part understandable. We argue that there are two key related
reasons for this: first, it can be extremely difficult to compare and
evaluate the relative benefits and disadvantages of different agent-
based systems as a result of the different approaches taken to realise
them; second, the focus on theories, architectures and languages has
obscured a need to consider the fundamental building blocks with
which they are built.

In attempting to avoid the pitfalls associated with this continual de-
velopment of yet more agent-based languages and architectures with
inadequate justification and relation to the broader field, we have
been working on a more uniform perspective to enable a stronger
inter-relation and comparison of different systems and approaches.
For example, work on specifying dMARS [2] and AgentSpeak(L) [3]
in a consistent fashion, and on comparing 3APL, AgentSpeak(L) and
AGENT-0 [6] has attempted to address these concerns and, in so do-
ing, has helped to clarify the agent-oriented approach and more gen-

1 Department of Computer Science, Universiteit Utrecht, P.O. Box 80.089;
3508 TB Utrecht, The Netherlands, email: koenh@cs.uu.nl

2 Cavendish School of Computer Science, University of Westminster,
115 New Cavendish Street, London W1M 8JS, UK, email: din-
verm@wmin.ac.uk

3 Department of Computer Science, University of Warwick, Coventry CV4
7AL, UK, email: mikeluck@dcs.warwick.ac.uk

eral properties of agents. Equally, it has enabled a consideration of
the needs for a set of building blocks for agent architectures by spec-
ifying schemas and actions for the updates of beliefs, goals (decision
making), planning and reflection. In this paper we use the formal
specification of 3APL as well as components from AgentSpeak(L)
and dMARS specifications to compare and highlight the major dis-
tinctions between them.

The difficulty in comparing different agent-based approaches in
part derives from the fact that there is no clear or formal presenta-
tion of the language or architecture in question. Even when systems
are presented by means of formal semantics, the differences in the
styles and formalisms used do not readily facilitate such comparison.
In this paper, by contrast, we do not aim to introduce a new system
or means for its description, but instead to use the particular case of
the agent programming language 3APL [5] (pronounced “triple-a-
p-l”) and its architecture [6] to provide a way of understanding and
specifying systems in a more general and more accessible way, and
to provide a route to system development. This is achieved through
the use of the standard well-known and commonly-used formal spec-
ification language, Z [8], which has also been used to specify several
other agent properties, languages and architectures (eg. [2, 3, 4]). As
a consequence, we get a uniform presentation of both the 3APL lan-
guage and its architecture in a clear and concise way, which enables
it to be more easily related to, and compared with, other systems.
We believe that our work moves a step closer to a unified account of
different agent languages and architectures. (Note that we aim for a
unified accountrather than unified languages or systems themselves.)

The contribution of this work is thus threefold. First, we present an
outline operational specification of 3APL that can be used as the ba-
sis of a subsequent implementation, so that the transition from what
might be called theory to practice is facilitated. Second, we allow
an easy and simple comparison of 3APL and its competitorsystems
such as AgentSpeak(L) [7] and dMARS, as we demonstrate through-
out the paper. The comparison considers the data structures required
by each language, the requirements for defining an agent before and
during run-time, and the basic operation of agents programmed in
a given language. Third, we provide an accessible resource in the
specification of techniques for the development of agent systems that
might not otherwise be available in a form relevant both to agent
architects and developers. In particular, we provide an intermediate
level between an agent programming language and a complete archi-
tecture, and provide for a library of building blocks for constructing
agent architectures.

The 3APL Programming Language 3APL is used to focus the
comparison, by presenting its formal specification, and then showing
points of divergence with other key systems. It supports the design
and construction of intelligent agents for the development of com-
plex systems through a set of intuitive concepts like beliefs, goals

and plans, which can be used to describe and understand the com-
putational system in a natural way. 3APL supports this style of pro-
gramming by means of an expressive set of primitives to program
agents, consisting of such sets of beliefs, goals and practical reason-
ing rules. Beliefs represent the issues the agent must deal with, while
goals allow the agent both to focus on what it must achieve and to
represent the way in which it can achieve it. In 3APL, goals are thus
used to represent achievement goals and as plans. The practical rea-
soning rules provide the agent with planning capabilities to find an
appropriate plan to achieve a goal, capabilities to create new goals,
and capabilities to use the rules to revise a plan.

Originally, the operational semantics of 3APL was specified by
means of Plotkin-style transition semantics [5]. Its re-specification,
however, moves closer to a good implementation, because of the
available Z tools for type-checking, animation, and so on. The re-
sulting computational model includes data structures, operations and
architecture, thereby isolating the data-types for an efficient imple-
mentation. Second, it provides an alternative perspective, highlight-
ing different aspects of the language and architecture that are not
manifested in a similar way in the transition style semantics.

In the specification that follows, we assume some familiarity with
Z. Note that many details of 3APL are not included here due to space
constraints, but a more complete specification of 3APL is available
elsewhere [1] (as for the other systems compared [2, 3]).

2 Beliefs, Actions and Goals

Beliefs and goals are the basic components on which all of 3APL,
dMARS and AgentSpeak(L) are based. In 3APL, beliefs are formu-
lae from a first order language that is defined in the usual way, and
first order terms are defined by means of given sets of first order
variables and function symbols. Since the 3APL programming lan-
guage distinguishes between first order variables and variables that
range over goals, we can define a partition of the set of variables Var,
and use FOVar to denote the set of first order variables and Gvar
to denote the set of goal variables (such that FOVar\ GVar = ?,
FOVar[GVar = Var). With the set of all function symbols denoted
as [FuncSym], a first order term is then either a first order variable
or a function symbol with a (possibly empty) sequence of terms as a
parameter.

FOTerm::= varhhFOVarii j functorhhFuncSym� seq FOTermii

2.1 Beliefs and Actions

Beliefs can now be defined by building types from the above primi-
tives; a belief atomis a predicate symbol (the set of all such symbols
denoted by [PredSym]) with a (possibly empty) sequence of terms as
its argument. Beliefs are then either an atom, its negation, the con-
junction or implication of two beliefs, true or false.

Atom
head: PredSym; terms: seq FOTerm

Belief ::= poshhAtomii j nothhAtomii j andhhBelief� Beliefii
j implyhhBelief� Beliefii j false j true

The definition of terms is identical for 3APL, AgentSpeak(L) and
dMARS. However, AgentSpeak(L) is the most limited in that it only
allows the conjunction of beliefs, whilst dMARS allows for the dis-
junction in addition to the features of 3APL. It is a very simple matter

to compare data structures in Z and to build a library of the possible
different representations of beliefs that might be required when de-
signing an agent language.

Agents accomplish tasks by performing actions, represented by
action symbols and specified in the same way as atoms, as they are
in AgentSpeak(L) and dMARS.

Action
name: ActionSym; terms: seq FOTerm

2.2 Goals

In 3APL, goals are used to represent both the goals and the plans
to achieve these goals of the agent. They are program-like struc-
tures that are built from basic constructs, such as actions, and regular
imperative programming constructs, such as sequential composition
and nondeterministic choice. Goals can be characterised as goals-
to-do, mental attitudes corresponding to plans of action to achieve a
state of affairs, or goals-to-be, corresponding to the state of affairs
desired by an agent. For example, an agent may have adopted the
goal-to-doof finishing a paper, and then sending it to the ECAI pro-
gramme chair. This might be done in pursuit of the agent’s goal-to-be
of desiring the paper’s acceptance.

Contexts Before formally describing goals, we introduce the no-
tion of contexts(distinct from the notion of context that refers to
plan preconditions in terms of beliefs in such systems as AgentS-
peak(L)), which are goals with an extra feature called ‘holes’ that act
as placeholders within the structure of goals. The role of contexts is
to enable an elegant presentation of the architecture of 3APL, rather
than in the 3APL language itself. More precisely, a contextis either
a basic action, a query goal, an achieve goal, the sequential compo-
sition of two contexts, the nondeterministic choice of two contexts, a
goal variable, or “�”, which represents a place within a context that
might contain another context. In the definition below, we use the
set of goal variables, GVar, to allow a process called goal revisionto
take place.

Context::= bachhActionii j queryhhBeliefii j achievehhAtomii j
gvarhhGVarii j comphhContext� Contextii j
choicehhContext� Contextii j �

The �, which denotes the placeholder or holewithin a context, is
distinct from a goal variable. Although both are placeholders, � is a
facility used for specifying3APL, whereas goal variables are part of
3APL itself.

We can now define a goal as a context without any occur-
rences of �. The formal definition below uses an auxiliary function
squarecountto count the occurrences of � in a context.

Goal== fg : Contextj squarecount g= 0g

The data structures used in both AgentSpeak(L) and dMARS are
very different. In AgentSpeak(L) a goal is either an achieve atom, a
query atom (as opposed to a query belief in 3APL) or an action.

ASGoal::= achievehhAtomii j queryhhAtomii j actionhhActionii

In AgentSpeak(L), therefore, goals do not contain procedural
knowledge as they do in 3APL by virtue of being the fundamental
data structure essentially describing all possibilities for action, in-
cluding an agent’s courseof action which, in AgentSpeak(L) and

dMARS, is distinct and represented in plans. In AgentSpeak(L),
these plans comprise a sequenceof basic actions, query goals and
achieve goals (known as the bodyof the plan).

ASBody== seq ASGoal

In dMARS, the body of a plan is a tree where the branches are
goals (whether they be internal or external actions, query or achieve
goals). For a plan to be successful, a path from the root to any leaf
node must be found.

DMBody::= EndhhGoalii j ForkhhP
1
(State�Goal� Body)ii

The data structure used clearly has ramifications for the operation
of agents in the different systems. Both AgentSpeak(L) and dMARS
require the use of eventsto trigger the placement of plan subgoals in
a queue for further planning. The new plan generated for a subgoal
is then added onto an existing stack of plans (or intention) for ex-
ecution. However, in 3APL, events are unnecessary since goals are
themselves modified in the process of planning and acting; instead of
using intentions, 3APL simply attempts to execute its current goals.

2.3 Practical Reasoning Rules

The components described above come together in 3APL in practical
reasoning rules, which are used both for traditional planning and for
the less common reflectionon goals. This latter aspect allows plans
to be re-considered if they will fail with respect to the goal they are
trying to achieve, if they have already failed, or it is possible to pur-
sue a more optimal strategy. There are four kinds of such rules [6]:
reactive rules to respond to the current situation and to create new
goals; plan-rules to find plans to achieve goals; failure-rules to re-
plan on failure; and optimisation-rules to replace less effective plans
with more optimal ones.

PRType::= reactivej failure j plan j optimisation

In more detail, a practical reasoning rule consists of an (optional)
head which is a goal, an (optional) body which is a goal, a guard
which is a belief, and a type to define its purpose. Informally, a rule
with head g, body p and guard b, states that if an agent tries to achieve
goal g and in a situation b, then it might consider replacing gby a
plan p as a means to achieve it. If it is a plan-rule, g is of the form
achieve swhere s is a simple formula, and the rule states that plan p
may offer a way to achieve g. If it is a failure-ruleand g fails, it states
that p may replace g. A reactive-rulehas an empty head (and can be
applied whenever the guard is true).

PRrule
head; body: opt[Goal]; guard : Belief; type: PRType

head= ?, type= reactive^
the head2 (ran achieve) ^ body 6= ?, type= plan

Guards serve two purposes: they specify situations in which rules
might be considered, and they enable some parameters to be retrieved
from the agent’s beliefs.

This is quite similar to the definition of plans in AgentSpeak(L),
which is defined by a triggering event (the addition or removal of
a belief or goal), a set of pre-conditions and the body containing
the procedural knowledge of the agent as a sequence of goals and

actions (as described above). Thus both AgentSpeak(L) plans and
3APL practical reasoning rules contain a pre-condition (defined as
a belief), a trigger and a body. However, the AgentSpeak(L) trigger
is an event, whereas in 3APL it is an optional goal. Moreover, prac-
tical reasoning rules in 3APL can be used to deal with reactive be-
haviour, goal creation, plan failure and plan optimisation in addition
to planning, partly through the inclusion of goal variables(as we see
below).

3 Agents

In this section we show how agents are constructed based on these
basic components. While focusing on 3APL, we contrast in particular
with AgentSpeak(L); dMARS is similar to AgentSpeak(L). Indeed,
from this point onwards, the divergence between systems is more
pronounced, and dMARS is largely omitted from the discussion due
to space constraints.

Agents and Mental State In 3APL, agents are characterised in
terms of their beliefs, goals, practical reasoning rules and expertise;
beliefs and goals are dynamically updated while rules and expertise
are fixed and do not change. A 3APL agent can thus be defined as an
entity with static expertiseand rulebase, i.e. a set of practical reason-
ing rules.

3APLAgent
expertise: PAction; rulebase: PPRrule

This is equivalent to AgentSpeak(L) agents, which have a set of ca-
pabilities and a plan library. In 3APL, an agent’s beliefs are recorded
in its beliefbaseand its goals in its goalbase, together making up the
mental stateof an agent that is updated during execution.

3APLAgentState
3APLAgent; belbase: PBelief; gbase: PGoal

In contrast, the state of AgentSpeak(L) agents includes beliefs,
executing intentions, events to be processed, and actions to be per-
formed.

ASAgentState
ASAgent; beliefs: PBelief; intentions: P Intention
events: PEvent; actions: Action

All of the systems we have mentioned in this paper have a similar
initial state in that all state variables not part of the agent are set to
some value (whether empty or defined by the user). In addition, only
the mental state of agents may change during their operation, but not
information contained in the Agent definition such as the expertise
or the rulebase in 3APL.

Agent Operation Two semantic notions are used to parameterise
the operation of a 3APL agent. First, the semantics of basic actions
is defined by a global function, execute, which specifies that an ac-
tion is an update operatoron the beliefs of the agent. Since execute
is a global function, any two agents capable of performing an ac-
tion are guaranteed to do the same thing when executing it. This is

particularly important to prevent confusion when specifying and pro-
gramming agents.

execute: Action� PBelief 7! PBelief

Second, a logical consequence relation LCon, determines the in-
ferences an agent can derive from its beliefs, and is also global. It en-
sures that all agents draw conclusions from their beliefs in the same
way, guaranteeing a “minimal amount of global consistency”.

LCon : P(PBelief� PBelief)

In relation to the semantic notions of beliefs and expertise, 3APL
and AgentSpeak(L) are similar. The way in which a set of beliefs
follows as a logical consequence of another set of beliefs is equiva-
lent since in both systems they are not specified. In terms of perfor-
mance of actions in the environment, however, AgentSpeak(L) does
not specify any impact on the state of the agent. 3APL is more gen-
eral and uses a global function definition that determines how an
agent’s beliefs change in response to performing an action (i.e. an
update semantics on the agent’s state is provided).

The particular constructs introduced so far, while derived from
3APL, can be viewed as a set of more general architectural build-
ing blocks that can be used to contribute to the linking and unifying
of work on agent programs and architectures. The value of this lies
in reducing the overhead of re-inventing the wheel, which occurs so
frequently in both theory and practice. The next two sections specif-
ically address the operation of 3APL.

4 The Application of Practical Reasoning Rules

Practical reasoning rules can be used to plan, revise, and create goals.
The application of a rule r to a goal g results in the replacement of a
subgoal g0, which matches the head of rule r , by the body of rule r . If
the body of the rule is empty, however, the subgoal is simply dropped.
This yields a substitution that is applied to the entire resulting goal.
When the head is empty, only the guard needs to be derivable from
the beliefs of the agent, and a new goal (the body) is added to the
goalbase of the agent.

In order to explain rule application, we introduce the notion of
front contexts, which are contexts (see above) with precisely oneoc-
currence of� at the frontof the context. Informally, an element at the
front of a context means that an agent could choose to perform this
element first, so that if a � at the front of a context was replaced by
a goal, then that goal could be performed first, before the remainder
of the overall goal.

Essentially, the task of rule application is to find a front context fc
such that if the subgoal g0 is insertedfor � (at the front of fc), the
resulting goal is identical to g. Applying r then amounts to updat-
ing fc with the body of the rule. There is a crucial difference here
between inserting and updating. Inserting a goal in a front context
simply means substituting the goal for the � in the front context;
while updating a front context with a goal means replacing � with
that goal and also committingto the choices made (pursuing a sub-
goal in a choice goal means committing to the branch in which the
subgoal appears in the choice goal). To formalise this, we can define
two similar functions to inserta goal into the square of a front con-
text and to updatea front context with a goal. we present the latter
here as UG but, due to space constraints, we only give the signature
of the former; details can be found in [1].

Insert : (Goal� FrontContext) ! Goal

UG : (opt[Goal] � FrontContext) ! opt[Goal]

8g : opt[Goal]; fc : FrontContext; g0 : Goal � UG (g;�) = g
non� empty UG(g; fc))

(UG (g; comp(fc; g0)) = fcomp(the(UG (g; fc)); g0)g
^ UG (g; choice(fc; g0)) = UG (g; fc) ^
UG (g; choice(g0; fc)) = UG (g; fc)) ^

empty UG(g; fc))
(UG (g; comp(fc; g0)) = fg0g ^
UG (g; choice(fc; g0)) = ? ^
UG (g; choice(g0; fc)) = ?)

Note that if the front context is of the form choice (�; g)
for some goal g, and a goal g0 is inserted for �, UG yields
UG(g0; choice(�; g)) = fg0g. This reflects the fact that if an agent
updates a choice goal, it requires the agent to commit to one of the
two subgoals. The square is used to indicate which selection is made.
In contrast, the Insertfunction simply substitutes a goal for a square,
and we have Insert(g0; choice(�; g)) = fchoice(g0; g)g.

A rule is applicableif the head unifies with a (sub)goal of the agent
and the guard of the rule follows from the agent’s beliefs. Formally,
a rule, r , is applicable withe respect to a goal, g and set of beliefs, bb,
if and only if:

(9 �; : Substitution; subg: Goal; fc : FrontContext�
Insert(subg; fc) = g ^ mgu((the r:head); subg) = � ^
(dom) � (beliefvars r:guard) ^
LCon(bb; fSubsBelief(� z)r:guardg)))

The definition below uses the auxiliary functions, beliefvarswhich
returns the set of first order variables contained in a belief, and
SubsBelief, which applies a substitution to a belief. If the rule has
no head, it is applicable simply if the guard follows from the belief-
base.

Thus, if the head of the rule is not empty, applying the rule
amounts to replacing a subgoal by the body of the rule. (If it is empty,
the body is simply added to the goalbase but we do not specify that
here). Care must be taken here to avoid interference of variables oc-
curring in rules and those variables occurring in goals (cf. [5]). For
this reason, all variables in the rule applied are renamed to variables
not occurring in the target goal, using the function RuleRename(r; V)
not defined here, which renames the variables in rule r so that no vari-
able from the set V occurs in the renamed rule. The auxiliary func-
tions are SubsGoal, which is analogous to the function SubsBelief
and goalvarswhich returns the set of first order variables in a goal.

ApplyRule
�AgentState
g? : Goal; r? : PRrule; rr : PRrule

rr = RuleRename(r?; goalvarsfg?g)
r?:type 6= reactive)
(9 fc : FrontContext; subg: Goal � Insert(subg; fc) = g? ^
(9 �; : Substitutionj (dom) � (beliefvars rr:guard) �
mgu(the rr:head; subg) = � ^
LCon(belbase; fSubsBelief(� z)rr :guardg) ^
belbase0 = belbasê
gbase0 = gbasen fg?g[
SubsGoal(� z) f(Insert(the(rr :body); fc))g))

5 The Execution of Goals

Execution of goals is specified through the computation steps an
agent can perform on a goal, which correspond to the simple ac-
tions of either a basic action or a query on beliefs. Recall that the
semantics of basic actions is given by a global function executeand
the semantics of beliefs is specified by the LCon relation. Now, an
agent is only allowed to execute a basic action or query that occurs
at the front of a goal, i.e. it is one of the first things the agent should
consider doing. The notion of front context is useful to find an action
or query that the agent might execute. If there is a front context in
which a basic action or query can be inserted for �, and which re-
sults in a goal of the agent, the agent might consider executing that
basic action or query. After executing the goal, the goal needs to be
updated, and this updating is the same as updating the front context
by removing �.

The execution of a basic action amounts to changing the beliefbase
of the agent in accordance with the function execute. The condition
(a; belbase) 2 (dom execute) expresses that the basic action a is
enabled, and thus can be executed.

ExecuteBasicAction
�AgentState
g? : Goal

(9 fc : FrontContext; a : Action j a 2 expertisê
Insert((bac a); fc) = g? ^ (a; belbase) 2 (dom execute) �
belbase0 = execute(a; belbase) ^
gbase0 = (gbasen fg?g) [UG (fg; fc))

Queries are goals to check if some condition follows from the be-
liefbase of the agent. Any free variables in the condition of the query
can be used to retrieve data from the beliefbase. The values retrieved
are recorded in a substitution �. A query can only be executed if it is
a consequence of the beliefbase (otherwise, nothing happens).

ExecuteQueryGoal
�AgentState
g? : Goal

(9 fc : FrontContext; b : Belief � Insert(query b; fc) = g? ^
(9 � : Substitution� LCon(belbase; fSubsBelief� bg) ^
belbase0 = belbasê
gbase0 = (gbasen fg?g) [(SubsGoal� (UG (fg; fc)))))

Comparison In AgentSpeak(L) there are two aspects to its opera-
tion: processing events and executing intentions. Processing an event
involves selecting a plan triggered by the event and adding it as an
intention to an intention stack. Executing intentions comprises se-
lecting an intention, locating its topmost plan, and performing the
plan’s next component (either an action, a query goal or an achieve
goal that posts a new event). If the intention finishes executing at this
point (in the case of actions or queries), it can be removed. In 3APL,
by contrast, the agent either applies rules, which requiress replacing
the front context of a current goal with the body of the plan, or exe-
cuting goals, in turn amounting to executing either a basic action or
query goal at the front of a goal.

The control structure of AgentSpeak(L) thus involves the process-
ing of all events by selecting the best plan, updating intentions as

necessary, and then executing intentions. The control structure based
on 3APL’s classification of rules allows for much richer descriptions
of agent operation. Indeed, many alternative control structures can
be provided in this way for a 3APL agent. In essence, 3APL substan-
tially simplifies AgentSpeak(L) whilst retaining all its functionality.

Lastly, we note that the concept of a context, used in the specifica-
tion of 3APL to represent the operation of an agent, does not have a
clear equivalent in the AgentSpeak(L) specification, in which execu-
tion and planning are specified simply by using several schemas and
some simple functions to manipulate lists.

6 Conclusions

The criticism levelled against much recent agent research is that the
particular contribution in relation to similar work and the broader
field is unclear. This is due to an inability to identify the links be-
tween systems and compare them easily, and can lead to a profu-
sion and proliferation of yet more agent theories, architectures and
languages. The solution to this problem is to develop a set of archi-
tectural building blocks that can be used as a basis for further con-
struction, and to ensure a strong and effective means of presentation
that allows the differences and similarities to be easily identified and
consequently compared and analysed.

By providing a Z specification of 3APL we are able to address
exactly this difficulty in comparing it with other systems similarly
specified in Z, such as AgentSpeak(L) and dMARS. By specifying
both the language and the architecture in one unified framework, we
are able to present a specification that reduces the complexity of the
semantics of language and architecture considerably. One of the ad-
vantages is that we do not have to build two different systems, but
only one. Our work illustrates that formal specification both enables
the key building blocks for agent architectures to be identified, and
allows for a comparison of the benefits and weaknesses of different
agent frameworks, and of the expressive power of agent languages.
Further work aims to perform exactly this function on the basis of
the architectural framework presented here.

REFERENCES
[1] M. d’Inverno, K. Hindriks, and M. Luck, ‘A formal architecture for the

3APL programming language’, in Proceedings of the first International
Conference of B and Z Users. Springer, (to appear 2000).

[2] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge, ‘A formal
specification of dMARS’, in Intelligent Agents IV: Proceedings of the
Fourth International Workshop on Agent Theories, Architectures and
Languages, LNAI 1365, pp. 155–176. Springer, (1998).

[3] M. d’Inverno and M. Luck, ‘Engineering AgentSpeak(L): A formal com-
putational model’, Journal of Logic and Computation, 8(3), 233–260,
(1998).

[4] R. Goodwin, ‘A formal specification of agent properties’, Journal of
Logic and Computation, 5(6), 763–781, (1995).

[5] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J-J. Ch. Meyer,
‘Formal Semantics for an Abstract Agent Programming Language’, in
Intelligent Agents IV: Proceedings of the Fourth International Workshop
on Agent Theories, Architectures and Languages, LNAI 1365, pp. 215–
229. Springer, (1998).

[6] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J-J. Ch. Meyer,
‘Control structures of rule-based agent languages’, in Intelligent Agents
V, LNAI 1555. Springer, (1999).

[7] A. S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logical com-
putable language’, in Agents Breaking Away: Proceedings of the Seventh
European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, LNAI 1038, eds., W. Van de Velde and J. W. Perram, pp. 42–55.
Springer, (1996).

[8] J. M. Spivey, The Z Notation: A Reference Manual, Prentice Hall, Hemel
Hempstead, 2nd edn., 1992.

