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Abstract

The reliability of traditional photogrammetric identification techniques using a small number of facial landmarks has recently come in for

criticism. However, the transformation of parameters into a new face space in which the error distributions are orthogonal, yields a maximum

likelihood solution to the problem of identifying a photographed face from a small, known, population which, in a simulated example, raises the

success rate from 20% to 93%. A full transformation yielding simultaneously independent population and error distributions can be derived from

raw population and error data using a straightforward computer procedure. Such a transformation facilitates computations for the situation where a

single suspect is held in custody and the likelihood ratio of his being identical with a photograph is desired. It seems premature to condemn

photogrammetry until the more efficient data-analysis approach outlined in this paper has been applied and tested.
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1. Introduction

There have recently been some major advances in the

application of advanced statistical methods in forensic science,

such as the use of Bayesian Networks in quantitative and

qualitative situations [1,2] and the application of Bayesian

techniques to the analysis of manipulated evidence [3], to the

inference of identity in speaker recognition [4], and to the

analysis of fingerprint, face and signature evidence [5]. A novel

and complex score-normalization technique, KL-Tnorm, was

developed as an aid to automatic speaker recognition [6]. In

addition, a group at the University of Edinburgh led by

Professor Colin Aitken has carried out important and

pioneering work in the application of multivariate analysis to

the development of significance tests and likelihood ratios

(LRs) for the assessment of trace evidence, such as glass

fragments found at a crime scene and on a suspect [7].

This paper addresses one of this group of problems, namely

that of identifying faces from photographs, such as stills taken

from CCTV video footage. The traditional approach to this,
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with historical roots in the work of the French pioneer of

anthropometry, Alphonse Bertillon, involves identifying a

number of well-defined points on the image, such as the left and

right ectocanthions, the stomion, and the nasion, and measuring

the distances between them. These measurements may be

standardized by dividing, for example, by the interpupillary

distance, to produce a number of proportion indices, or as they

are termed in Ref. [8], PIs; the angles between lines joining

pairs of landmarks can also be measured [8,9]. A more complex

technique involves principal component analysis of image

pixels, such as in Ref. [5], where a combination of eigenfaces

and fisherfaces involving 180 dimensions was used.

Both methods require an estimate of within-source

variability, i.e. the extent to which images from a particular

individual would tend to vary if the image were taken

repeatedly; without such an estimate, there can be no certainty

as to the range within which the true values of the parameters

for that individual may lie, and so the degree of confidence to be

placed in any identification is impossible to evaluate. Good

results were obtained in Ref. [5] from computing a minimum

variance estimate from the mean of all within-source

variabilities in the database.

Kleinberg et al. [8] adopted the converse strategy. They

conducted a series of tests in which they attempted to identify a
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video still of a subject by taking an individual PI measure from

that photo, and comparing it with the PI measurements for a set

of high-quality photos of 10 people including the subject, using

a closest fit criterion. They demonstrated that even the best

performing PI only identified the individual correctly in 25% of

cases, and concluded that the accuracy of the method was too

poor for use in the identification of criminals.

This paper examines the effectiveness of a multivariate

approach to the use of PIs in identification, in a situation

analogous to that in Ref. [8], and compares the results. It also

looks at the use of Bayesian methods for the case where there is

a single suspect and a photograph of a known perpetrator. This

approach differs from that in Ref. [7] in that we focus less on the

theoretical approach and more on providing practical details of

how to convert a set of raw photogrammetric data into

simultaneously orthogonalized population and error distribu-

tions with no assumptions of multivariate normality, using a

commonly available statistical program (SPSS). These methods

can be applied without too much effort to situations involving

many variables (we have trialled them with 16 variables)

whereas the methods examined in Ref. [7] were applied to only

three variables of interest. We do, moreover, make a significant

additional invariance assumption, spelt out in Section 2.2

below: the assumption seems plausible, but has not yet been

rigorously tested.

The Bayesian approach is sometimes taken to be synon-

ymous with the provision of likelihood ratios. In the words of

Ref. [5]: ‘‘the Bayesian approach provides . . . results in the

form of likelihood ratios (LR) from the forensic laboratory to

court’’. We conform with this approach to the extent that we

provide means of calculating LRs for face identification. The

approach has the advantage of being philosophically uncon-

troversial and mathematically precise. We also point out,

however, that it is at least theoretically possible to imagine

circumstances in which the bald provision of an LR without

qualification could be misleading. Our reason for confining

discussion to LRs and not attempting to apply Bayes’ theorem

to the calculation of posterior probabilities, is that this requires

an estimate of prior probability. This can be a highly

controversial area, and one in which agreement, especially

in an adversarial forensic context, is highly unlikely. Never-

theless, it seems worthwhile to point out that in the event that a

suspect is apprehended in the neighbourhood of a crime and

subsequently found to closely resemble a perpetrator, conclu-

sions as to his guilt are likely to be much better founded if his

apprehension was independent of the identification than if, for

example, his arrest followed a trawl of a digitized photographic

database to find the individual with best fit, even though the LRs

in these two hypothetical instances might be identical.
2. Methodology

2.1. Assumptions about the basic system

The situation envisaged here has three basic components. Firstly, there is an

agreed system of PIs based on facial landmarks, which can be measured by an

operator from a still photograph. (The term ‘‘PI’’ is used for convenience to
include any facial measurement, if necessary both distances and angles invol-

ving landmark points, which is the sense in which it is used in Ref. [8].)

Secondly, the assumption is made that there is a source of background data,

consisting of high-quality photographs of a large number of members of a

particular population, which can be measured accurately and their PIs deter-

mined (as might be the case for example if there is a national, digitized database

of passport photographs taken according to standard criteria). Thirdly, there will

be a system, such as a security camera, in a particular location, which is the

source of forensic data.

The first difficulty is to estimate the within-source variability of the camera

system. It is envisaged employing a purely empirical method for estimating

these errors, involving the calibration of a camera/operator system. This would

be complicated though not impracticable; it could involve for example testing

the system by repeatedly photographing volunteers having known PIs, using the

photogrammetric measurement system in question to obtain a scatterplot of

points within the multidimensional space represented by the PI measurements

as axes, and calculating the corresponding scatterplot of error vectors by

subtracting the known accurate PI parameters for the particular volunteer in

question, from those parameters estimated from the stills, to obtain an error

reading for that calibration point. The variance due to operator error could be

estimated (and reduced) if a number of operators were asked to measure the

same photo repeatedly. The errors will in practice depend on the distance from

the camera to the face, on the angle between the camera and the face and on

lighting levels. However, in many practical cases, where a camera is covering a

particular position (say the entrance to a building) from a particular angle and

where security lighting is installed, it is likely that these factors will have little

effect in comparison with other errors of measurement. The transformation

outlined below, which is the first step in our method, does not incidentally

depend on the calculation of parameters from this raw data; it can use the data in

their raw form.

It is assumed in what follows that the system is unbiassed, and that the error

distribution is the same for all faces in the population: photographing face ‘‘A’’

100 times, say, will yield the same distribution or scatterplot of PI measure-

ments around the mean values for face ‘‘A’’ as photographing face ‘‘B’’ round

the mean for face ‘‘B’’. A second, more immediately plausible assumption is

that the quality of PI data available in the population database is error-free in

comparison with the error introduced by the camera/operator system, and can be

ignored. This was not the assumption in Ref. [8], where all photos were of high

quality, and where the variance arose from the target photograph being taken on

a different occasion, and by a different camera, to the comparison photographs.

However, if target photographs are taken on different occasions and compared

with a fixed database of suspects, all the variance will be due to differences in

the target images, and the analysis in this paper can still be applied.

2.2. Preliminary analysis of the basic system

Even before dealing with the analysis of any ‘live’ data, considerable work

can be done on the population and error databases to enable the subsequent

analysis to proceed more easily. There are two sets of random variables (RVs) to

be considered. The first set is that of the values of the PIs for the faces in the

general population. Each face gives rise to a set of n parameters, or a vector in

the n-dimensional space with the PIs as the axes, and this vector can be

considered as itself being an RV, giving rise to a scatterplot in the PI-space.

Call this the population distribution in PI-space.

The second set of RVs consists of the errors in the PIs. This is also

represented by a series of vectors in the n-dimensional PI-space, and in this

case the scatterplot is, by assumption of zero bias, centred on the origin. Call this

the error distribution in PI-space. This is available from the process of error

calibration.

The assumption introduced above is that the error distribution is indepen-

dent of which face is being measured. Suppose v is a vector in the population

distribution corresponding to a particular face. Imagine that this face is now

measured repeatedly by the camera system in question. The distribution of face

vectors obtained will be the set of vectors {v + ei}, where e is a random variable

vector representing the error distribution. If w is another face vector, the set of

measurements that would be obtained from observing that face would of course

be {w + ei}. The key point is that even if the face vector changes, the

distribution of the set of points {ei} remains the same. In what follows, the
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vectors in the face space, both error vectors and face vectors, will be subjected to

a linear transformation; by virtue of linearity, it will leave invariant the property

just mentioned: if f is linear, it takes {v + ei} to {f(v) + f(ei)}, and likewise

{w + ei} to {f(w) + f(ei)}, so that the property of the invariance of the error term

is preserved in the transformed space.

In general, there will be non-zero product–moment correlations between

pairs of PI variables, for both the population and error distributions. The use of

Bayes’ theorem requires the calculation of the probability density functions

(pdfs) for both distributions. These are much simpler to calculate if the PI-space

has first been transformed, by choosing new axes such that for both distribu-

tions, variation along these new axes is independent. This can be achieved by

appealing to the well-known theorem of linear algebra which states that for a

pair of real, symmetric matrices, one of which is positive definite, it is possible

to choose a coordinate system in which both are simultaneously diagonalized,

with the positive definite matrix assuming the form of the identity (see for

example Ref. [10], p. 58). In the present instance, the covariance matrices of

both the distributions are positive definite, so either could be chosen as the

identity, but there are advantages in choosing the error distribution for this.

Appendix A provides details of how the transformation to simultaneous

principal axes can be carried out for real data, using a widely available statistical

package, SPSS. The consequent matrix multiplications are simple enough to be

executed using the basic functions and formula-dragging facilities in a program

like Excel. An example of this method applied to a sample dataset is given in

Appendix B. It is assumed in what follows that this transformation has been

carried out, so that the PE covariance matrix is the identity, and the population

distribution matrix is diagonalized.

I make the final assumption that the distribution of all individual variables is

Gaussian multivariate normal. Failure of normality would not be fatal to the

method: as demonstrated for example in Ref. [7], it is possible in the event of

failure of normality to use a kernel density estimate to approximate the actual

distribution found. In the analysis of an initial data set involving 16 photo-

grammetric variables within a limited experimental population of 100 indivi-

duals and a single camera, we found that once the population and error

distributions had been simultaneously diagonalized, all 32 variables were

normal using the univariate Kolmogorov–Smirnov statistic ( p � .05, Bonfer-

roni correction). Univariate tests are of course sufficient to determine multi-

variate normality at this stage, all variables being orthogonal. We might also

expect on general principles that the linear transformations involved in diag-

onalization would tend to produce new variables likely to approximate normal-

ity more closely than the original ones, if only because the central limit theorem

would suggest that linear combinations of many random variables are likely to

approach normality. However, failure of normality would not condemn the

method. We make the assumption of normality here if only because it enables

mathematically exact solutions to be described more easily, and shortens the

discussion. However, the simultaneous orthogonalization procedure works in

SPSS without any assumptions of normality, and this procedure is used here, to

our knowledge, for the first time in this application.

2.3. Nature of the problem: challenges in identification

As remarked in Ref. [8], it is important to be clear about the objectives when

a surveillance system is established. It is assumed that its main purpose is that,

in the event that a crime is committed, the person responsible (the ‘perpetrator’)

is caught on camera. Suppose that independently, a ‘suspect’ is arrested in the

vicinity by police, perhaps investigating an alarm or report of crime in the area.

The arrest might be on grounds of suspicious behaviour and possession of items

or equipment suggesting criminal intent. The suspect is then taken to the police

station and photographed to establish their PIs accurately. The forensic expert is

asked to provide evidence on whether or not the suspect is identical with the

perpetrator. Alternatively, the expert may be provided with the crime scene

photograph and a database of criminal suspects, and asked to rule on which if

any of them might be identical with the perpetrator caught on camera.

We wish by examination of the photographs of the perpetrator and the

suspect to determine whether the corresponding individuals (i.e. the suspect and

the perpetrator) are identical. In this first case, where a suspect has already been

arrested, there are two mutually exclusive and exhaustive hypotheses to be

considered: H, that the suspect is the perpetrator, and A, that he is not. If A is

true, it is assumed that the suspect is a random sample from the population on
which the population distribution is based. The strict Bayesian approach

requires the estimation of a prior probability for H, before the video evidence

is taken into account, in accordance with the formula:

PrðHjvÞ ¼ PrðHÞ � PrðvjHÞ
fPrðHÞ � PrðvjHÞ þ PrðAÞ � PrðvjAÞg :

Here the symbol ‘Pr’ refers either to finite probabilities or to pdfs; the context

makes it obvious which is intended.

In some treatments (e.g. Ref. [5]) the formula

PrðHjvÞ ¼ PrðHÞ � PrðvjHÞ
fPrðHÞ � PrðvjHÞ þ PrðAÞ � PrðvjAÞg

is rewritten in terms of the odds and the likelihood ratio, defined as Pr(vjH)/

Pr(vjA), as follows:

OðHjvÞ ¼ OðHÞ � LR;where the odds of an event E are OðEÞ ¼ PrðEÞ
ð1� PrðEÞÞ

Pr(vjH) is simply the pdf of v on condition that the suspect is the perpetrator,

i.e. it is given by the error distribution centred on the suspect’s parameters,

which we will call vector w say. It is the probability of measuring v in the photo,

conditional on the true value of the PI vector for the suspect being w. It can be

calculated from the Euclidean distance between v and w in the transformed PI-

space, because the Mahalanobis distance giving the multinomial normal error

distribution is equal to the Euclidean distance: all error variances are unity, and

independent. Pr(vjA) is the distribution of v on the assumption that it is from an

unknown member of the population, and not the suspect. But this is practically

equivalent to stating that v is measured from a random member of the

population, so Pr(vjA) = Pr(v) in the absence of any other information.

There is one final twist in the calculation of Pr(v). The distribution of v in PI-

space is not exactly that of the set of transformed faces, i.e. the population

distribution in this space. This is because v represents the PIs taken from a

random member of the population using the noisy camera system. The dis-

tribution of v therefore comprises two elements: the variance of the population,

and the variance introduced by the video system itself. It is therefore the sum of

two RVs, one from the population distribution, and one from the error terms.

This means that if the standard deviations (S.D.s) of the population distribution

along the transformed axes are {si} for i = 1, . . ., n, the distribution of v is

similar but with S.D.s of si ¼ fðs2
i þ 1Þ1=2g for i = 1, . . ., n, along the axes. This

gives all the information now required to compute the posterior likelihood that

the suspect is the perpetrator.

The LR has been recommended as a means of presenting forensic evidence

in an understandable manner [5,11–13]. Indeed, most treatments of forensic

applications of the Bayesian approach prefer to avoid the controversial area of

prior probabilities, i.e. the estimation of O(H) in order to give O(Hjv) by

multiplication. It seems to be assumed that the calculation of LRs is sufficient to

encapsulate the effective message of forensic analysis, while at the same time

steering clear of any awkward controversy.

Unfortunately, however, there may be circumstances in which at least a very

rough estimate of O(H) may be unavoidable. Suppose for example the suspect

has been identified not on the basis of independent evidence but because the

investigating authorities have trawled a database of digitized photographs and

found him to be the best fit, and found, say, an LR of 10,000 on this basis. Mere

common sense would suggest that such an identification is much less secure

than if an individual had been arrested at the scene of a crime that had occurred

shortly before, and at a place and time when there were few if any other likely

suspects, and only subsequently been found to fit the photograph of the

perpetrator, with an LR of 10,000. Common sense, often a misleading guide,

can here be given a theoretical justification. We should observe that when the

suspect has been identified only after examination of the PI database, and

therefore there was no prior information against him, O(H) should be equated

with 1/(N � 1) where N is the size of the digitized database. Whereas when the

suspect was arrested on account of other suspicious circumstances, the prior

probability might be estimated (admittedly very roughly) at not less than 0.01:

imagine a deserted industrial estate at 3 a.m. where the suspect has been picked

up acting suspiciously. This suggests that even a very crude estimation of priors

may give important information on how to interpret LRs which we ignore at

peril of miscarriages of justice.
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It may be urged as an objection to the first scenario that such a trawl is at

present beyond the resources of any law enforcement agency. One might

respond that passport photographs are already digitized in some countries,

and technical developments may well make it possible to measure PIs auto-

matically within, say, the next 15 years if not sooner. At any event, if LRs are

employed exclusively, it is worth pointing out the need to use them with care

and discretion.

In what follows we focus on the LR, for which exact estimates can be made

that evade the troublesome philosophical controversies, with the caveat that

evasion of this problem does not necessarily equate to its avoidance.

Assuming as above that Pr(vjA) = Pr(v), the expression for the LR can be

expanded as follows, using well-known expressions for the pdfs of independent

multivariate normal distributions:

LR ¼ expð�d2=2Þ �PiðsiÞ
expð�D2=2Þ

¼ exp
ðD2 � d2Þ

2

� �
�PiðsiÞ

where d is the Mahalanobis (or Euclidean) distance of the suspect face from the

perpetrator in the error distribution, D is the Mahalanobis distance of the

perpetrator from the centroid of the distribution in the face distribution (with

S.D.s si as above) and the product term is to adjust the pdf for the non-unity

S.D.s in the face distribution. Ignoring the term in D for the moment (and it will

differ little from 1 if the target face is near the average, i.e. the centroid of the

population distribution), the LR is seen to depend not only on the distance of the

faces in error space, but also on the product of the S.D.s of the face/picture

distribution. This product is a good measure of the sensitivity of the system, and

could be used to compare different camera/operator systems.

3. Results

3.1. Identification of a suspect already detained

In the case of the system considered in Appendix B, the

product term is 19.51989 and assuming for simplicity that

D = 0, the maximum value of the LR is just under 20, when

d = 0. This is unlikely to be of much use for securing a

conviction, however close the perpetrator face is to the

suspect’s face. The system is simply not sensitive enough to

give proof of identity beyond reasonable doubt.

However, the minimum value of the LR is of course bounded

below only by zero, so in this case clear evidence of non-

identity is possible. Acting for the defendant, we may consider

an LR of 1/1000 as sufficient to cast grave doubt on the

suspect’s guilt: even with a prior likelihood of guilt of 99.9%,

an LR of this value will reduce the posterior probability of guilt

to just 50%.

What is the minimum value of d for which LR < .001? This

gives (assuming again D = 0) exp(�d2/2) < .001/19.52, and

d2 = 2ln(19520) = 19.76, and finally d = 4.45. So even if proof

of guilt is unlikely to be obtained by using this system, in many

cases proof of innocence could be demonstrated.

If the case where D is large is now considered, a heuristic

argument can be used to show that even an insensitive system

may give a high LR when d is sufficiently small and D

sufficiently large. To take an extreme example, suppose a

perpetrator has so untypical a set of PIs, and lies so far from the

centroid of the population distribution, and in such a sparsely

populated portion of it, that a sphere of radius d = 4.45 around

the target contains no other individual from the entire

population. Suppose for simplicity also that the suspect

happens to have identical measurements to the perpetrator’s
image. Then it seems clear that the suspect must be the

perpetrator. For any other individual than the suspect must lie

outside the critical region of radius 4.45, and therefore be ruled

innocent by the argument given above.

The critical value of D to ensure a high LR can be calculated

for the simulated system. If we demand an LR of at least

10,000, we require that

exp
ðD2 � d2Þ

2

� �
�PiðsiÞ> 10; 000;

and soðassuming the most favourable case; d ¼ 0Þ

exp(D2/2) > 10,000/19.52, and finally D > 3.54. Examination

of the chi-square distribution with 3 d.f. with chi-square = (D2)

shows that this will happen in approximately 0.5% of cases

(one-tailed p = .005); the method will thus be sufficiently

sensitive in this, admittedly very small, proportion of cases.

3.2. Identification from face data alone

A situation that may occur increasingly often is that where

there is no suspect in custody, and it is necessary to attempt to

identify an individual from a photograph alone. If the

transformed parameters for the faces whose data are given in

Appendix B are jittered by the transformed values of the errors,

and then compared with the originals and the ‘best fit’ found in

terms of the Euclidean distance in image space, the correct

identification is made in all but four cases. The total number of

trials was 60, with each face given 6 error ‘jitters’ and then

tested against the 10 exact values. Face 1 was misidentified as

face 2, face 4 as face 6, face 6 as face 4 and face 10 as face 8, in

each case for just one value of the error jitter. That meant that 56

out of 60 trials, or 93%, produced correct identifications.

When the method in Ref. [8] was used, each untransformed

PI was tested in turn. The method was given the benefit of the

doubt when it identified two faces, one of which was correct, as

equally close to the probe. The most successful PI was PI2,

which gave a success rate of 12 out of 60 trials or 20%. PI1 and

PI3 had successes on just 6 trials each, or 10%. These figures

are comparable with those in Ref. [8].

It might be thought that if individual PIs are unsatisfactory,

then taking all three PIs simultaneously and judging closest fit

by Euclidean distance in the untransformed face space, might

give all the benefits of using the transformed space, without the

tedious matrix manipulations. This method was in fact tested on

the simulated faces. Out of 60 trials (each face presented six

times, i.e. jittered by the six error terms) 40 successfully

identified the correct face, or 42 if dead heats were given the

benefit of the doubt. This represents a success rate of just 70%.

Admittedly it did give much better results than for using

individual PIs to judge identity, but the outcome was still much

inferior to working in the transformed space.

By comparison, taking a single PI formed by adding the

three original parameters and taking as the identification

criterion Euclidean distance with respect to this single

dimension, 46 faces were correctly identified out of 60 trials,

giving a 77% success rate. (For an explanation of why this
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parameter outperformed both the individual PIs and the use of a

Euclidean distance criterion in the untransformed PI-space, see

Section 4.)

4. Discussion

4.1. Sensitivity of simulated example

The PCA-based analysis of the simulated example seems

almost unreasonably powerful in view of the fact that only three

PIs were used. The reason for its success in this case can be seen

by looking at the transformation matrix,

10:07838 5:941495 0:778506

16:249 �2:14996 �3:36617

11:17439 �3:153 2:844475

The striking thing about it is that the first column is evidently

larger than the other two. Very approximately, it is a multiple of

the matrix with 1’s down the first column and zeros elsewhere.

The S.D.s of the new variables are:

10:86191 1:571878 1:143279

and these confirm that the first component seems to be the most

effective in producing variance that is large compared with the

error variance (which is unity along each axis). In fact, little

would be lost by taking this first component alone and dis-

carding the rest. But this component is approximately a multi-

ple of (PI1 + PI2 + PI3). The reason for the effectiveness of

doing this is seen if this simple transformation is applied to the

PIs and the error terms (see Appendix B). The variance between

the faces for the three original PIs and this new one are:

0:302765 0:31693 0:313404 0:856673

whereas for the error terms, the variances are:

0:130384 0:148324 0:186548 0:107703

where the first three terms refer to the old PIs and the final one

to their sum. The variance has increased for the face population,

but decreased for the corresponding error term. The ratios

between the two, which determine the sensitivity of the system,

have increased from

2:322102 2:13674 1:680023

to

7:954011

and this shows that even with this crude approximation, it is

possible to find a new PI which is much more effective than any

of the original ones taken individually, with a success rate of

77% compared with 70% with the use of all three PIs in

untransformed space, and 10–20% for the individual PIs.

It is possible that with a small number of variables and data,

a suitable combined PI could be found by inspection. But the

merit of the PCA approach adopted here is that it automatically

discovers the combinations of PIs which yield the best results

and gives them full credit in the analysis. There are other

benefits. To quote from Ref. [8]: ‘‘one important factor that may

limit the reliability of anthropometric proportions is changes in
facial expression’’. However, if the system is error-calibrated

using volunteers who are instructed to assume a variety of

expressions, the method will automatically take this into

account and find linear combinations of face measurements

which separate out the sources of error into independent

components. It is likely that PIs will exhibit a degree of

correlation when different expressions are assumed, particu-

larly if there are, say, 10 or more PIs; most expressions will be

accounted for by changes in a small number of these. The

effects will be limited by the fact that facial muscles tend to

reflect the basic emotions of happiness, sadness, anger, fear,

surprise, disgust [14]. It has been argued by Schlosberg and his

successors that there are perhaps only two underlying

dimensions of variation [15,16], in which case an analysis

involving 10 PIs may ‘use up’ two of them in accounting for

spurious variance due to changes in expression, still leaving

ample scope in the remaining variables to track genuine

individual differences in facial characteristics.

4.2. Application to identification of an unknown suspect

On the question of identifying a perpetrator from a

database of possible suspects, the comparison between using

Euclidean distance in transformed space and the comparison

of raw PI data as in Ref. [8], shows that the latter method is

indeed as faulty as the authors suggest, but it also shows that

even in this very simple example with just three parameter

variables, use of the transform raises the success rate from a

dismal 10–20% to a respectable 93%. In practice, anthro-

pometry would almost certainly use more than three

parameters, and one could expect the superiority of this

method over that based on individual PIs to increase

monotonically, if not proportionally, with the number of

variables considered. Moreover, as mentioned in Ref. [8],

other data such as comparison of eye and eyebrow shapes or

mouth and nose sizes may distinguish individuals with near or

identical PI measurements. With a method that is no more

than 20% accurate this would be of little value, but the

simulated data gave complete accuracy in 93% of cases, and

even where the closest face was incorrect, the correct face was

second closest. A procedure which involved checking both

first and second choices for secondary characteristics such as

eyebrow shape or mouth size would plausibly improve the

success rate for the present system to something close to

100%.

Note that identifying a face on the basis of closest fit in the

transformed space can be seen as an approximation to a

Bayesian decision procedure, at least in the multivariate normal

case. To show this, assume that the perpetrator must be one of a

set of N suspect faces, each suspect having equal prior

probability of being the perpetrator. If we write Hi for the

hypothesis ‘‘suspect i is the perpetrator’’ and Ai for the logically

contrary alternative hypothesis ‘‘suspect j is the perpetrator for

some j 6¼ i’’, then Bayes’ theorem states that

OðHijvÞ ¼ OðHiÞ � LRi;

where LRi ¼ PrðvjHiÞ=PrðvjAiÞ:
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We now make the plausible approximation that all the

denominators in the expressions for LRi are equal as i varies.

That is, we assume that if we remove one individual from the

list of suspects and calculate the value of the probability

function (assuming the known error distribution) at the actual

obtained perpetrator face v, this value will not vary significantly

whichever face we decide to remove. This assumption can of

course be tested if necessary in particular cases.

Making this assumption, we conclude that

OðHijvÞ ¼ l� PrðvjHiÞ;

where l is a constant that is independent of i.

If we now adopt the Bayesian decision procedure ‘‘identify

that individual i as the perpetrator for which the posterior

probability of i’s guilt is the maximum out of the list of

suspects’’, this procedure amounts to maximising Pr(vjHi).

But in our face space, in which the variables have been

chosen so that the errors are independent standard normal

distributions, Pr(vjHi) has a distribution whose value is a

monotonically decreasing function of the Mahalanobis distance

between v and vi, the face vector for suspect i. Therefore,

finally, we have shown that our Bayesian decision procedure

amounts to choosing that suspect whose face is closest, using

the error-based Mahalanobis distance, to the perpetrator’s

image.

Therefore there are not two distinct methods, but really only

one. The maximum likelihood method is an approximation to

the full method, and will yield a useful result only in cases

where it is known that the perpetrator comes from a given pool

of suspects, and where there is no reason to favour any suspect

over any other. Even then, it is a somewhat crude instrument, in

that like any ‘‘first past the post’’ system, it may not lead to a fair

result. It has the advantage of simplicity, however, in that

because it does not require the explicit calculation of Pr(vjAi),

or indeed of Pr(v), it does not necessitate the double PCA that is

needed if the actual value of the LR is needed for any particular

suspect. In other words, the simplification arises because only

relative, not absolute values of LR suffice for this particular

procedure.

We did not therefore really test the full method when, above,

we showed that the transformed variables gave greater ability to

identify faces than either the use of univariate PIs or a simple

Euclidean distance based on untransformed variables. This cut

down version of the method could in fact have been carried out

using a simple one-stage transformation to independent

standardized error variables. The full two-stage method would

only show its value in cases where it is necessary to calculate

the LR for a suspect, rather than simply to compare his LR with

that of other suspects. Where the full LR is needed, our method

provides a valid method of calculating it, which is why we have

demonstrated all the steps needed to do this, in Appendices A

and B.

5. Conclusions

The use of a double PCA transformation enables an exact

solution to be found to statistical questions involving face data
with a limited number of parameters. In particular, the method

allows the calculation of LRs when comparing a photograph

with a known suspect, and automatically gives the maximum

likelihood solution, equivalent to a comparison of LRs, when an

identification is to be made from a pool of suspects. It appears

significantly more effective than either identification using an

individual parameter, or the use of pooled parameters in an

untransformed face space. The relative simplicity of the

method, compared with sophisticated modern techniques such

as eigenfaces, may recommend it when explaining the outcome

of a photogrammetric analysis in a courtroom setting.

It would be premature to conclude, as some authors have

done, that identification using facial landmarks is inefficient,

until the most powerful methods of analysis have been tried and

found wanting. This paper suggests theoretical approaches

which maximize the value of photogrammetric information. A

fair assessment of photogrammetry will only be possible once

these methods have been applied in a practical context and the

results evaluated; we should not lightly discard the methods

introduced by Bertillon, and which were historically so

important in law enforcement.

If evaluation of these exact analytical methods proves to be

positive, then their applications should be of value not only in

providing evidence for identity, but also in alerting law

enforcement agencies to the dangers of unsafe identifications

when they rely on camera/operator systems which are

intrinsically unreliable.

International cooperation between law enforcement agen-

cies and the exchange of intelligence on criminals and their

activities is currently more necessary than ever [17,18].

Mathematically optimal methods of analysis in face identifica-

tion might assist the standardization of methodology, thereby

facilitating these highly desirable developments.

Appendix A

The first step is to standardize the error distribution. Suppose

there are n PI measurements (variables v1; . . . ; vn), and

therefore also n PI error terms, e1, . . ., en. Suppose the S.D.s of

the error terms are e1, . . ., en, respectively. Multiply each error

variable by the inverse of the appropriate S.D., so the new,

rescaled error variables are e1/e1, . . ., en/en; they will therefore

be standardized (zero mean, unit variance). (This is needed

because in SPSS, PCA using the correlation matrix auto-

matically standardizes the variables before operating on them,

and we need to ensure that this concealed transformation is

made explicit so that it can be performed also on the population

distribution variables.) Apply the same multiplication by e�1
i

also to each of the population distribution variables vi.

Now apply a principal component analysis to the

transformed set of error terms. In SPSS, go to ANALY-

ZE� DATA REDUCTION� FACTOR ANALYSIS.

Enter all rescaled error variables into the ‘variables’ box.

Ensure the following settings are used:

Rotation – Method – none.

Scores – check ‘Display factor score coefficient matrix’.
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Extraction – Method – Principal Components [not any other

factor analysis method].

Analyze – correlation matrix.

Display – unrotated factor solution.

Extract – number of factors – enter total number n of

variables.
The output gives the Component Score Coefficient Matrix.

Extract this, for example to EXCEL or MATLAB, and apply it

(by post-multiplication) to transform both the error distribution

and the population distribution, to give a new error distribution

and population distribution, in which the new variables are the

components taken from the PCA. Because the error distribution

variables were used in the PCA, the new error distribution will

consist of independent components, each of unit variance. The

new components of the population distribution will not, in

general, be independent.

The final step is to transform to a second set of components,

in which the population distribution axes will also be

independent. To do this, go to

ANALYZE�DATA REDUCTION� FACTOR ANALYSIS:

Enter all population distribution components derived from

the first PCA into the ‘variables’ box.

Ensure the following settings are used:

Rotation – Method – none.

Extraction – Method – Principal Components.

Analyze – covariance matrix [note, this is essential: using

the correlation matrix, which is the default setting in

SPSS, standardizes the variables prior to analysis and

makes the error axes no longer of unit variance].

Extract – number of factors – enter total number n of

variables.
The output will display the Component Matrix, sub-

divided into raw and rescaled versions. Copy the raw version

into e.g. Excel. Before applying it to the variables, divide

each column of the matrix by its ‘length’ (square root of

inner product with itself). This ensures that the matrix is

orthogonal. It is known that such a transformation will

preserve the property of the error distribution variables, that

they are statistically independent and of unit variance. At the

same time, the matrix still, after, normalization, transforms

the population distribution variables into independent

components. We have therefore achieved the desired

transformation.

Appendix B

The artificial set of data involves just three PIs, ten faces,

and six error measurements. The situation is clearly

unrealistic, but may serve as an indication of how much more

powerful the Bayesian approach can be even for very sparse

information sets than relying on individual PIs to discriminate

faces.
The data are as follows. Face parameter measurements:
PI1
 PI2
 PI3
Face 1
 1.5
 1.3
 1.6
Face 2
 1.3
 1.4
 1.4
Face 3
 1.6
 1.6
 1.8
Face 4
 1.7
 2
 1.9
Face 5
 1.4
 1.2
 1.1
Face 6
 1.8
 2
 2
Face 7
 1.2
 1.5
 1.2
Face 8
 1.9
 1.8
 1.7
Face 9
 1.1
 1.1
 1.2
Face 10
 2
 1.7
 1.5
Error terms:
PI1
 PI2
 PI3
0.1
 �0.15
 0.11
�0.15
 0.1
 0.11
�0.1
 0.15
 �0.24
0.15
 �0.15
 0.11
�0.1
 �0.1
 0.15
0.1
 0.15
 �0.24
Note that for each PI the error variables have, as required, a

mean of zero.
Carrying out the three steps in the recipe given above results

in the following successive operations, where all matrix

multiplications are post-multiplications, and all vectors are

row vectors (e.g. the vector representing face 1 is (1.5, 1.3,

1.6)):
1. M
ultiply by the diagonal matrix with entries

7:66965 6:741999 5:360563

representing the inverse of the error S.D.s.
2. M
ultiply by the component score coefficient matrix

represented by the new error terms, which is found from

SPSS to be:

1 2 3

PI1 error 0:24 0:861 1:24

PI2 error �0:518 �0:019 2:427

PI3 error 0:451 �0:48 2:131

Obtain the raw component matrix for the new face
3.
variables:

1 2 3

FCP1 0:114 0:197 0:547

FCP2 0:961 1:192 �0:09

FCP3 10:772 �0:108 0:002
and divide the columns by their ‘lengths’ to obtain the

following orthogonal matrix:

0:010541 0:162409021 0:986727

0:088855 0:982698238 �0:16235

0:995989 0:089036418 0:003608
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which, post-multiplying both the error and the face parameters,

gives, finally,

err1 �0:20033 0:569813 0:895668

err2 1:342326 �1:45305 �0:1405

err3 �1:25234 �0:15992 �1:26545

err4 0:30359 0:866888 0:934594

err5 �0:95658 �0:8521 0:685438

err6 0:763335 1:028377 �1:10975

and

face 1 54:1203 1:072489 1:342897

face 2 51:49464 0:299795 0:281684

face 3 62:23772 0:39105 0:979792

face 4 70:86259 �0:19009 �0:00438

face 5 45:90036 2:269837 0:179427

face 6 72:98787 0:088764 0:35792

face 7 49:87683 0:12125 �0:70168

face 8 67:39359 2:058807 0:255662

face 9 42:36939 0:387084 0:566939

face 10 64:54165 3:498553 0:101235

It can be verified that the error terms are independent and of

unit variance and that the face terms are also independent,

though not of course of unit variance. The manipulations are

complete, except to calculate the S.D.s of the new face

distribution, which are

10:81578 1:212766 0:554155

The S.D.s of the population of photos of faces now has the

S.D.s

10:86191 1:571878 1:143279

taking into account the fact that the act of deriving a photo from

a face adds an independent random variable of unit variance to

it, i.e. the S.D.s {si} for i = 1, . . ., n, must be corrected to

fðs2
i þ 1Þ1=2g to represent the distribution of the photos, as

required for Bayes’ formula.

The three steps given above can of course be combined into a

single post-multiplication by the product of the three matrices,

namely

10:07838 5:941495 0:778506

16:249 �2:14996 �3:36617

11:17439 �3:153 2:844475

and it can be checked that applying this to the original set of

data gives the final set directly. Moreover, using this matrix

enables any target or probe face in the original set of variables

to be transformed into the new variables and conclusions to be

drawn using Bayes’ theorem.
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