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Measurement incompatibility is one of the basic aspects of quantum theory. Here we study the structure of
the set of compatible, i.e., jointly measurable, measurements. We are interested in whether or not there exist
compatible measurements whose parent is maximally complex, in the sense of requiring a number of outcomes
exponential in the number of measurements, and related questions. Although we show this to be the case in
a number of simple scenarios, we show that generically it cannot happen, by proving an upper bound on the
number of outcomes of a parent measurement that is linear in the number of compatible measurements. We
discuss why this does not trivialize the problem of finding parent measurements, but rather shows that a trade-off
between memory and time can be achieved. Finally, we also investigate the complexity of extremal compatible
measurements in regimes where our bound is not tight and uncover rich structure.
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I. INTRODUCTION

One of the first lessons one typically learns about quantum
mechanics is that, in general, observables do not commute
and that this leads, for example, to the famous uncertainty
principle [1]. The noncommutativity of observables shows
that not all properties of a system can be measured simulta-
neously in quantum theory. Only when observables commute
does a measurement in their common eigenbasis allow for the
outcome of both measurement to be obtained simultaneously.
The lack of commutativity is an indication that, in general,
measurements are incompatible.

From a modern perspective, not all measurements are pro-
jective and commutativity no longer fully captures the notion
of incompatibility. In particular, any set of positive operators
M = {Ma}a that sum to the identity

∑
a Ma = 1 constitutes

a valid measurement, known as a positive-operator-valued
measure (POVM) measurement. Although for POVMs there
are multiple notions of compatibility, the most important is
the notion of joint measurability [2,3]. This concerns whether
there exists a single parent measurement which can be mea-
sured in place of the individual measurements and can be used
to determine all their outcomes.

Parent measurements are in general more complex than
their children. In particular, they are more complex in the
sense of generally having many more outcomes than their
children. Our interest here is in how complex parent measure-
ments need to be in general, i.e., in just how many outcomes
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they need to have. While it is known that parents need to
have at most a number of outcomes that is exponential in the
number of measurements, it is not known to what extent this
bound is tight. The exponential number of outcomes makes
determining whether a set of measurements is compatible,
and finding a parent, difficult. In this paper we instigate the
study of this and related questions. These questions probe
the structure of the set of compatible quantum measurements,
a topic which has to date received very little attention [4,5]
(see also [6,7] for related structural questions about individual
POVMs). We give examples of measurements whose par-
ents are maximally complex; however, our main result is to
find an upper bound on the complexity of parent measure-
ments. Our bound, which is linear in the number of measure-
ments, is generically significantly tighter than the exponential
bound. We show nevertheless why the problem of determining
whether a set of measurements is compatible, and finding the
corresponding parent, remains difficult even in light of our
bound.

II. JOINT MEASURABILITY

Consider a pair of POVM measurements M = {Ma}a and
N = {Nb}b, with o outcomes each. This pair of measurements
is jointly measurable if there exists a measurement K = {Kλ}λ
with k outcomes, λ ∈ [k] ≡ {1, . . . , k}, and a pair of partitions
of [k] (nonempty disjoint subsets), (PM

a )a and (PN
b )b, such

that

Ma =
∑

λ∈PM
a

Kλ, Nb =
∑
λ∈PN

b

Kλ. (1)

That is, instead of measuring M or N individually, the mea-
surement K can be performed and the outcomes a and b
generated purely classically as a function of the outcome λ.
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In (1) each POVM element of M and N is a sum of POVM
elements of K. For each value of λ we can specify which
outcome a and b occurs for M and N, respectively. This shows
that there is a canonical form of parent measurement C =
{Cab}a,b which has o2 outcomes such that Cab is associated
with the outcome a for M and b for N, i.e., such that

Ma =
∑

b

Cab, Nb =
∑

a

Cab. (2)

This highlights that we never need to consider parent mea-
surements with more than o2 outcomes, since if two elements
have the same label ab when put into canonical form, they are
simply added together.

More generally, a collection of m measurements {Mx}x,
indexed by x, such that Mx = {Max |x}ax , is jointly measurable
if there exists a parent C = {Ca}a, with outcomes indexed by
the tuple a = (a1, a2, . . . , am), such that

Max |x =
∑
a/ax

Ca, (3)

where a/ax = (a1, . . . , ax−1, ax+1, . . . , am). That is, the chil-
dren now arise by marginalizing over all but one of the
outcomes of the parent.

One notable implication of the canonical form is that
deciding whether a set of measurements is compatible is an
instance of semidefinite programming (SDP) [8], since the
conditions (3) that ensure C is a parent measurement are linear
equality constraints, which need to be imposed in addition to
the normalization and positivity conditions that ensure C is a
valid POVM. In particular, it is the following feasibility SDP:

find {Ca}a

subject to Ma|x =
∑

a

Da(a|x)Ca ∀ a, x,

Ca � 0 ∀ a,

1 =
∑

a

Ca. (4)

Here Da(a|x) = δa,ax can be thought of as a collection of
deterministic conditional probability distributions, labeled by
a, such that a = ax with certainty. As we will discuss next,
the canonical form also has implications for the complexity of
joint measurability.

III. THE COMPLEXITY OF COMPATIBILITY

An important first observation is that there is an upper
bound on the number of outcomes that a parent measurement
needs to have, if it exists. In particular, every parent can be
written in canonical form, with outcomes labeled by the tuple
a. If each of the measurements Mx has o outcomes, then the
there are only om tuples, and hence only om outcomes.

At first sight, it might appear that parents are inherently
more complex than their children, having a number of out-
comes that is exponential in the number of measurements.
There are two reasons why this conclusion is premature. First,
if Ca vanishes for some values of a, then these outcomes
never occur, independent of the state being measured. Thus,
the number of outcomes of the parent is only the number of

nonvanishing POVM elements, which could be substantially
smaller than om. Second, a given set of measurements does
not uniquely determine a parent measurement. In general
there are infinitely many parent measurements for a given
set of compatible measurements. This is analogous to the
fact that there are in general infinitely many joint probability
distributions consistent with a set of marginal probabilities.
Thus, even if for a given parent none of the POVM elements
vanish, this does not rule out the possibility of there being
another parent, such that some of its POVM elements vanish.

In order to understand how complex parent measurements
are, we thus need to study the simplest possible parent for a
given set of compatible measurements. More generally, this
leads to a number of questions concerning the structure of the
set of compatible measurements, which arise from the idea of
studying the complexity of parent measurements. (i) Do there
exist sets of compatible measurements such that the simplest
parent necessarily has all elements nonvanishing? (ii) If not,
then what is the dependence on the number of measurements
m in the worst case, i.e., is the complexity exponential in m?
(iii) Which sets of measurements have the simplest parents
and how simple are they (excluding trivial cases, such as
when the measurements Mx are equal or a coarse graining of
each other)? (iv) For typical sets of measurements, chosen at
random with respect to a natural measure, are parents typically
complex or simple?

In the remainder of this paper we present our findings
concerning these questions. We believe that these questions,
along with the many related ones that they lead to, collectively
constitute an interesting line of investigation.

IV. FROM PARENT MEASUREMENTS
TO COMPATIBLE CHILDREN

It is instructive to start by focusing on parent measurements
of the form (1) and their resulting children. Consider as a
concrete example the parent measurement K with POVM
elements

Kλ = 1
3 (1 + n̂λ · σ ) (5)

for λ = 0, 1, 2, where σ = (X,Y, Z ) is the vector of Pauli op-
erators and n̂λ = (cos(2λπ/3), sin(2λπ/3), 0). Such a mea-
surement, referred to as the trine, has outcomes corresponding
to three vertices of an equilateral triangle in the xy plane of the
Bloch sphere. The trine measurement leads straightforwardly
to a set of three compatible measurements L, M, and N via

L0 = K0, M0 = K1, N0 = K2,
(6)

L1 = K1 + K2, M1 = K0 + K2, N1 = K0 + K1,

which are just the three partitions of the three-outcome parent
into two-outcome children. This constitutes a set of three
two-outcome measurements that has a simple parent with
only three outcomes. The complexity of such a parent is
much simpler than that of the canonical parent that gives the
exponential upper bound 23 = 8 on the number of outcomes.
Notice also that this moreover provides an example of a
set of three measurements which are compatible, despite not
commuting.
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This example can be straightforwardly generalized. It is
always possible to form children from a parent by considering
all of the partitions of the parent’s outcomes. The total number
of partitions of a set of size o is the Bell number Bo [9].
Discounting the two trivial partitions (the parent itself and the
trivial measurement with a single outcome), a parent with o
outcomes is always a parent for a set of Bo − 2 measurements.
The Bell numbers grow rapidly, which has crucial conse-
quences for the complexity of compatible measurements. Take
for instance the case of a parent with six outcomes. Here B6 =
203; hence every six-outcome measurement leads to a set of
201 measurements that are compatible. Therefore, these 201
compatible measurements arise from a six-outcome parent,
which is overwhelmingly simpler than the canonical parent
(upper bound), whose number of elements is exponential in
the number of measurements.

V. MAXIMALLY COMPLEX SETS OF COMPATIBLE
MEASUREMENTS

We now turn our attention to the other direction and study
whether there exist sets of compatible measurements with the
opposite behavior: to be maximally complex, i.e., such that the
only possible parent POVM necessarily contains om outcomes.

In the simplest case, of two measurements with two out-
comes, it is straightforward to show that maximally complex
sets of measurements exist. Consider noisy Pauli measure-
ments

Ma = 1
2 [1 + η(−1)aX ], Nb = 1

2 [1 + η(−1)bZ], (7)

where a and b are in {0, 1} and X and Z are the Pauli operators.
Such measurements are compatible for η � 1/

√
2. A parent

measurement for η = 1/
√

2 is given by

Cab = 1

4

(
1 + (−1)aX + (−1)bZ√

2

)
. (8)

This parent has four nonzero elements. Let us assume that
there exists a parent with only three nonzero elements, e.g.,
C00 = 0 (all other cases follow identically). In order to repro-
duce Ma and Nb, we must have

M0 = C00 + C01 = C01, (9a)

N0 = C00 + C10 = C10 (9b)

and in order to be normalized we must have

1 = C00 + C01 + C10 + C11 = M0 + N0 + C11. (9c)

This implies that

C11 = 1 − M0 − N0 = −η(X + Z ). (10)

This operator is however not positive semidefinite for any η �=
0. Thus, there is no parent POVM with three elements for the
set of measurements in Eq. (7).

The above example was particularly simple because there
is a unique parent. In general, a parent has om elements and
there are (o − 1)m + 1 linearly independent constraints that
these elements satisfy to reproduce the given measurements:
a constraint from all but one of the POVM elements of each
of the measurements Mx, in addition to the normalisation
constraint. The only situation with a unique parent is when

om − (o − 1)m − 1 elements of the parent vanish, i.e., it has
(o − 1)m + 1 outcomes. The above situation where o = m =
2 is the only situation where (o − 1)m + 1 = om − 1 and a
unique solution exists under the assumption that the parent
is not maximally complex.

The next simplest case that can be considered is m = 3
measurements with o = 2 outcomes. Here we were able to
find an example for d = 3 (qutrit measurements). In partic-
ular,

La = 1

2

[
13 + (−1)a

(
3
√

2

8
X01 + 1

2
X02

)]
,

Mb = 1

2

[
13 + (−1)b

(
3
√

2

8
Z01 + 1

2
X12

)]
,

Nc = 1

2

(
13 + (−1)c 1

2
(Z02 + Z12)

)
,

(11)

where a, b, and c are in {0, 1, 2} and Xi j = |i〉〈 j| + | j〉〈i| and
Zi j = |i〉〈i| − | j〉〈 j| are Pauli operators acting on the subspace
spanned by |i〉 and | j〉.

These measurements can be shown to be jointly measur-
able, with a parent with eight nonvanishing elements. It can
also be shown that it is impossible to find a parent with seven
or fewer nonvanishing elements. In particular, if Cabc = 0
is imposed, for any value of a, b, and c, then no parent
exists for this set of measurements. The proof of this claim
is not as straightforward as in the previous example and
uses a method we developed, based upon duality theory of
semidefinite programs, which we explain below. It allows us
to find a certificate (or “witness”), which guarantees that there
is no parent measurement if any POVM element of the parent
vanishes. This shows that it is possible to certify conclusively
that parents with given elements vanishing do not exist.

Finally, by a heuristic search method we were able to
numerically find examples in a number of other cases: for two
measurements (m = 2) in dimension d with o = d outcomes,
requiring a parent with d2 elements in each case. Details are
provided in an accompanying online notebook [10].

Method for lower bounding complexity

In order to find parent POVMs which are not maximal,
we can modify the SDP formulation of joint measurability to
tackle the problem. In particular, if we define by O(C) = {a |
Ca �= 0} the list of outcomes of C, then we find that the joint
measurability problem remains an SDP when we specify this
list. That is, a parent POVM will exist with the only nonzero
outcomes a subset of O(C) if and only if the value of the
following SDP is zero:

max
ν,{Ca}

ν

subject to Ma|x =
∑

a∈O(C)

Da(a|x)Ca ∀ a < (o − 1), x,

Ca � ν1∀ a ∈ O(C),

1 =
∑

a∈O(C)

Ca,

0 � ν. (12)

023292-3



SKRZYPCZYK, HOBAN, SAINZ, AND LINDEN PHYSICAL REVIEW RESEARCH 2, 023292 (2020)

Here we recall that, due to normalization, it is not necessary to
impose the final constraint (when a = o − 1) on each element
of Ma|x, as it is automatically satisfied. Note that, for later
convenience, we have also moved away from the feasibility
formulation of the problem, to a more standard maximization
formulation, by relaxing the variables of the problem to be
allowed to be not positive semidefinite and maximizing the
minimal (negative) eigenvalue.

The benefit of this form of the problem over its fea-
sibility version is that we can then use duality theory to
find certificates (or witnesses) that a given set of compatible
measurements has complexity at least c, by proving that the
value of (12) is strictly negative for all sets O(C) of size
c − 1. That is, we can check all possible parents with a given
number of elements and if none of them provide a valid parent
POVM, then the complexity must be larger than the number
checked.

We note that this requires the evaluation of (om

c ) semidefi-
nite programs, a number which quickly becomes impractical.
In the case of checking for maximal complexity, i.e., c =
om − 1, it requires the evaluation of om SDPs.

The dual formulation of the SDP of Eq. (12) is particularly
useful, as we see next. Using standard techniques for obtain-
ing the dual formulation of a convex optimisation problem, it
can be shown that the dual formulation of (12) is given by

min
{ρax},ω

tr
∑

a �=(o−1),x

ρaxMa|x + tr ω

subject to ω +
∑

a �=(o−1),x

Da(a|x)ρax � 0 ∀ a ∈ O(C),

1 � tr
∑

a �= (o − 1), x
a ∈ O(C)

Da(a|x)ρax + oC tr ω, (13)

where {ρax}a,x and ω are the dual variables and oC = |O(C)|.
This dual optimization problem is useful due to weak duality,
which says that for any feasible set of dual variables {ρax}a,x

and ω,

tr
∑

a �=(o−1),x

ρaxMa|x + tr ω � ν∗, (14)

where ν∗ is the optimal value of (12). Note that {ρax}a,x

and ω do not even need to be optimal for the problem (13)
for this to hold. Therefore, if we can find explicit choices
of {ρax}a,x and ω for each set O(C) with oC outcomes,
such that tr

∑
a �=(o−1),x ρaxMa|x + tr ω < 0, then this provides

a certificate, or witness, that the complexity of {Mx}x is at
least oC + 1.

Next we will show that the maximal complexity of a set of
measurements in fact does not grow exponentially, but much
slower in the number of measurements m.

VI. BOUNDING THE COMPLEXITY OF COMPATIBILITY

We now provide a proof that the number of outcomes of
a parent measurement can always be bounded from above,
by considering the geometry of the set of compatible mea-
surements. We will demonstrate below that for any set of
m measurements {Mx}x, with o outcomes in dimension d , a

parent measurement can always be found which has no more
than

d2[m(o − 1) + 1] (15)

outcomes. That is, the dependence of the complexity on the
number of measurements is in fact linear and not exponential.

The basic idea behind the proof, which we give in full
below, is to use the geometry of the set of compatible
measurements. It has the structure of a cone, with extremal
rays given by deterministic subnormalized measurements.
Caratheodory’s theorem [11] then shows that no more than
d2[m(o − 1) + 1] extremal rays are necessary to form an
arbitrary point inside the cone. Translated back, this means
that a parent never needs more than this many outcomes.

Note that this bound can be larger than om, which in
particular happens when m = 2 and o = d (as in the previous
examples), hence why maximally complex sets can be found
in certain cases. However, in general this shows that as the
number of measurements grows, the complexity does not
increase exponentially, as would be naively thought.

Proof of upper bound

Since we are considering d-dimensional measurements,
each POVM element is specified by d2 real parameters. Once
o − 1 POVM elements of a given measurement are specified,
then the remaining element is fixed, due to the normalization
condition

∑
a Ma|x = 1 for all x. Thus, in total d2[m(o − 1)]

real parameters are required to uniquely specify a set of
measurements. In what follows we will also redundantly keep
track of the right-hand side of the normalization condition,
since we will need to relax it. That is, we will also keep track
of the d2 parameters necessary to specify 1. As such, we can
represent a set of measurements by a point in a real vector
space RD, where D = d2[m(o − 1) + 1].

Consider now a set of compatible measurements such
that

Ma|x =
∑

a

Da(a|x)Ca. (16)

For each a, we can also represent Da(a|x)Ca by a point in the
same space RD. Note that for such points

∑
a Da(a|x)Ca =

Ca; thus these do not represent measurements, but rather
submeasurements, since Ca � 1. This was the reason for
including the extra d2 parameters in the above, since this
allows us to consider the space of all submeasurements.

Geometrically, we see that the point in RD correspond-
ing to the collection of measurements {Mx}x is a positive
combination of at most om points, one corresponding to each
Da(a|x)Ca (since some of the Ca may vanish, such points
correspond to the origin in RD and all these points map
degenerately there).

Assume now that a parent has been found with k > D
outcomes, i.e., such that k of the Ca do not vanish. We thus
have k points in D dimensions, and hence the points cannot all
be linearly independent. Therefore, there must exist numbers
λa such that ∑

a

λaDa(a|x)Ca = 0. (17)
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We take λa = 0 for any a such that Ca = 0, such that the
summation indeed runs over all values of a and not only the k
nonvanishing elements.

Therefore, we see that the following equation holds for
all γ :

Ma|x =
∑

a

(1 − γ λa )Da(a|x)Ca. (18)

This implies the existence of a new potential parent measure-
ment C′ = {C′

a}a, with

C′
a = (1 − γ λa )Ca. (19)

This will only be a valid measurement if C′
a � 0 for all a.

Therefore, we take

γ = 1

maxa λa
(20)

such that for all a it holds that 1 − γ λa � 0 and for at least
one value of a, 1 − γ λa = 0.

What this implies is that, starting from the assumption
of a parent with k nonvanishing outcomes, we have a pro-
cedure to obtain a parent with at most k − 1 nonvanishing
outcomes. This holds whenever k > D, since then we are
always guaranteed that the points cannot be linearly inde-
pendent. We can thus iterate this procedure until we are left
with a parent with D outcomes (or fewer, if in the last step
multiple outcomes simultaneously vanish), at which point we
can no longer guarantee linear dependence between the re-
maining POVM elements of the parent and must terminate the
procedure.

This argument is nothing but Caratheodory’s theorem for
cones (presented in terms of submeasurements), which states
that any point inside a convex cone in dimension D can
be written as a conic combination of at most D extremal
rays.

VII. MEMORY VERSUS TIME TRADE-OFF

A major barrier to determining whether a set of measure-
ments is compatible or not is the exponential increase in the
size of the SDP optimization problem that has to be solved
as the number of measurements increases. Since canonical
parents have exponentially many outcomes in the number of
measurements, it quickly becomes impractical, due to lack
of memory, to determine whether a set of measurements is
compatible or not.

The bound (15) however says that this exponential over-
head is not required. Potentially the bound then implies that a
more efficient algorithm could be found in order to determine
whether a set of measurements is compatible or not.

Although this bound implies the existence of a much
smaller parent, a new problem arises: to determine which
elements of the canonical parent are nonvanishing. The bound
implies that it is sufficient to check the

( on

d2[m(o−1)+1]

)
parents

with d2[m(o − 1) + 1] nonzero elements in order to determine
whether the measurements are incompatible or not.

Thus the need for a large memory can be overcome, but
at the expense of needing to carry out a significant number of
calculations. In situations where calculations can easily be run
in parallel, this may provide a practical way to attack problem

instances that were previously infeasible due to memory re-
quirements.

VIII. COMPLEXITY OF TYPICAL MEASUREMENTS

A further interesting question is to understand the behavior
of typical sets of compatible measurements. In scenarios
where the bound (15) is tight, we see immediately that typical
sets of compatible measurements will be maximally complex.
This follows from the geometry of the problem; Since typical
measurements will lie in the interior of the set, they will need
to be conic combinations of d2[m(o − 1) + 1] points and not
fewer.

In scenarios where the bound (15) is not tight, the situation
is much less clear. It is interesting to ask whether most sets
of compatible measurements have simple parents or not. One
problem with tackling this directly is the need to generate
random instances of compatible measurements, according to
some measure. Here we focus on the typical behavior of sets
of measurements on the boundary of the set of compatible
measurements. In this case, we use the following procedure
to induce a random measure on the boundary, based upon the
Haar measure on unitary matrices.

(i) Randomly generate m unitary matrices {Ux} according
to the Haar measure, and from them define m ideal von Neu-
mann measurements {{
a|x}a}x, via their eigenvector decom-
position. These sets of measurements will be incompatible
with probability one.

(ii) Using the dual formulation of the SDP for compatibil-
ity, extract the dual variables, which geometrically define a
random direction in the space of sets of measurements.

(iii) Find the set of compatible measurements {Mx}x which
is furthest in this direction. This problem is an SDP and
moreover will always find a set of compatible measurements
on the boundary of the set, due to convexity.

This method induces a measure on the boundary of com-
patible measurements, starting from the Haar measure on uni-
tary matrices. Sampling from this distribution over compatible
measurements, we then estimate the probability distribution
over complexity in a number of cases which are numerically
tractable. The full numerical results can be found in the
accompanying online notebook [10]. A summary of the results
are presented in Fig. 1. We find a rather complicated structure,
in all cases a distribution of parent sizes, indicating that the
boundary has a rich structure.

IX. COMPLEXITY OF EINSTEIN-PODOLSKY-ROSEN
STEERING

The above also imply results about the complexity of
local-hidden-state (LHS) models in the context of Einstein-
Podolsky-Rosen steering [12–14]. Einstein-Podolsky-Rosen
steering is the nonlocal effect whereby measurements per-
formed by Alice on half of an entangled quantum state
“steer” the states of Bob at a distance in a way which
cannot be explained by a simple causal model (known as
the LHS model). In particular, if Alice and Bob share a
state ρAB and Alice performs a measurement Mx, then upon
obtaining outcome a she steers Bob into the unnormalized
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FIG. 1. Histograms showing the distribution of complexity for
measurements sampled from the boundary of the jointly measurable
set using the induced measure (as described in the main text). In
each instance, 1000 points were sampled, and we give here the
relative frequencies of the complexity of the measurements, com-
puted numerically. Interestingly, in all cases, no maximally complex
measurements are found.

state

σa|x = trA[(Ma|x ⊗ 1)ρAB]. (21)

The collection of states is said to have an LHS model if

σa|x =
∑

λ

p(λ)p(a|x, λ)ρλ, (22)

where λ is a classical hidden variable, distributed according
to p(λ), p(a|x, λ) are a collection of probabilities describing
Alice’s measurement outcome, and ρλ are a collection of
hidden normalized states, describing Bob’s system.

Similarly to the case of compatibility, one can study the
complexity of LHS models. First, a canonical form of LHS
model can always be found, whereby

σa|x =
∑

a

p(a)Da(a|x)ρa, (23)

where now the hidden variable is the tuple a = (a1, . . . , am),
which corresponds to a list of measurement results, one for
each measurement of Alice, and ρa are the associated hidden
states for Bob, which are jointly distributed according to p(a).
In this model, when Alice receives the hidden variable a
and is asked to make the measurement x, she returns the
measurement result a = ax.

As in the case of compatible measurement, LHS models
are inherently more complex than the assemblage of states
they reproduce. In particular, the number of hidden states
in the model is exponential in the number of measurement
settings of Alice. We can thus ask, just as in the case of
compatibility, whether it is always possible to find a simple
LHS model, which contains only a small number of hidden
states. In the following we will show that this is indeed
the case, by exploiting the recently discovered connection
between steering and measurement incompatibility [15,16].

Using this connection, we will show that the maximal
number of states needed in any canonical LHS model is
the same as the number of elements in a canonical parent

POVM, i.e.,

d2[m(o − 1) + 1]. (24)

The first step is to recap the one-to-one correspondence be-
tween incompatibility and steering that was recently found:
Every set of measurements leads to steering if and only if
it is incompatible [15,16]. In fact, starting from an LHS
model in the steering scenario, it is always possible to obtain
a parent measurement, and vice versa, using the following
construction.

First, we note that the states in a steering scenario satisfy
the no-signaling constraint

∑
a σa|x = ρ, where ρ is the re-

duced density operator of Bob, which is independent of x. We
consider the purification of this state

|ψ〉 =
∑

i

√
λi|λi〉|λi〉, (25)

where ρ = ∑
i λi|λi〉〈λi| is the diagonal form of Bob’s re-

duced state. We then note that the operators form a collection
of POVMs

Ma|x =
√

ρ−1(σa|x )T
√

ρ−1, (26)

where T denotes transpose in the basis {|λi〉}, and if Alice and
Bob share the state |ψ〉 (i.e., the purifying system is given to
Alice) and she performs these POVMs, then this prepares the
assemblage σa|x for Bob

trA{[
√

ρ−1(σa|x )T
√

ρ−1 ⊗ 1]|ψ〉〈ψ |} = σa|x. (27)

Equation (26) is the key equation for the one-to-one cor-
respondence. Assume first that the assemblage σa|x has an
LHS model of the form (23); then the associated set of
measurements has the form

Ma|x =
√

ρ−1

(∑
a

p(a)Da(a|x)ρT
a

)√
ρ−1

=
∑

a

Da(a|x)
[
p(a)

√
ρ−1ρT

a

√
ρ−1

]
. (28)

Defining Ca = p(a)
√

ρ−1ρT
a

√
ρ−1, which is positive semidef-

inite by construction and sums to the identity operator, we see
that they constitute a canonical parent for the measurements
Ma|x. In the other direction, the calculation follows identically.
In particular, from (26) it follows that

σa|x = √
ρMT

a|x
√

ρ. (29)

Hence, if the Ma|x form a set of compatible measurements,
with the parent satisfying Ma|x = ∑

a Da(a|x)Ca, then

σa|x =
∑

a

Da(a|x)
√

ρCT
a
√

ρ. (30)

Defining p(a) = tr[
√

ρCT
a
√

ρ] and ρa = √
ρCT

a
√

ρ/p(a),
which are seen to correspond to a valid probability distribution
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and a set of normalized quantum states, we thus recover an
LHS model for the assemblage σa|x.

Thus, putting everything together, whenever we have an
assemblage that has an LHS model, we can always find a set
of compatible measurements that reproduce the assemblage.
The correspondence furthermore shows that the LHS model
and the parent measurement are directly related to each other.
Hence, our construction for finding a parent measurement
with at most d2[o(m − 1) + 1] outcomes directly implies the
existence of an LHS model with at most this many hidden
states.

X. PROBABILISTIC PARENTS

We finally discuss the possibility of a more general class
of parent measurements and the implications this may have
for complexity. When introducing joint measurability, our
general definition was that children are generated from parents
by partitioning the outcomes of the parent. A slightly more
general definition is to introduce randomness and allow for
mixing over partitions. In this case, the pair of measurements
M = {Ma}a and N = {Nb}b are jointly measurable if there ex-
ist a parent measurement K = {Kλ}λ and a pair of conditional
probability distributions pM(a|λ) and pN (b|λ) such that

Ma =
∑

λ

pM(a|λ)Kλ, Nb =
∑

λ

pN (b|λ)Kλ. (31)

This definition does not change whether or not a set of mea-
surements is compatible with respect to our previous notion,
since it is always possible to go from this form to the canonical
form [17]. It also does not affect our upper bound (15), since
this provides an explicit parent for a set of children. It does
however have implications for the existence of maximally
complex sets of compatible measurements, since in principle
it might be possible to reduce the size of the parent by using
randomness.

We find that this is indeed the case. For the example given
in Eq. (7) we were able to find the probabilistic parent with
only three outcomes

K0 = 2M0 − η
√

2N0

2 − η2
, K1 = 2N0 − η

√
2M0

2 − η2
, (32)

and K2 = 1 − K0 − K1. Indeed, {K1, K2, K3} is a valid POVM
for η � 0.5609 and reproduces M and N with

M0 = K0 + η√
2

K1, N0 = η√
2

K0 + K1. (33)

We do not know whether or not a probabilistic parent exists
for larger values of η � 1/

√
2. Nevertheless, no deterministic

parent with three outcomes exists for any η, as previously
shown.

The nature of the problem of finding probabilistic parents
seems much richer than the problem of finding deterministic
parents, which has the simple form of a convex optimization
problem. When introducing probabilistic parents, this convex
structure is lost and it seems much harder to decide whether
a probabilistic parent of a given size exists. Furthermore, this
raises an interesting question regarding the possible trade-off
between the amount of randomness necessary and the size of

the parent. We leave further exploration of these interesting
questions for future work.

XI. CONCLUSION

In this work we have instigated the study of the complexity
of a set of compatible measurements, in terms of how many
outcomes their parent measurement necessarily has. We have
shown in one direction that very large sets of compatible
measurements can be formed starting from a simple parent
(i.e., one with only a few outcomes) and in the other direction
that the complexity of compatibility can be bounded and
scales no worse than linearly in the number of measurements
m. We have also explored the typical behavior of the boundary
of compatible measurements in instances where this bound is
not tight and shown that in these cases the boundary appears
to have a rich structure. We have finally raised the possibility
of using randomness in the parent and found examples where
this reduces the number of outcomes of the parent. This raises
interesting and subtle questions regarding what this implies
for complexity. We leave this investigation for future work.

We believe our results raise many interesting questions
about the structure of compatible measurements and poten-
tially suggests a way to quantify “how compatible” a set of
measurements are. We hope that it will lead to further exciting
work in this and related directions.
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APPENDIX: CERTIFICATE FOR m = 3 MEASUREMENTS
WITH o = 2 OUTCOMES

In this Appendix we apply the method given in Sec. V
to prove that the example (11) (with m = 3 measurements
and o = 2 outcomes) requires a maximal parent with eight
outcomes. The set of measurements defined in Eq. (11) may
be expressed as follows, using a slightly more general notation
which will be useful later:

Ma0|0 = 1

2

[
13 + (−1)a0

(
3
√

2

8
X01 + 1

2
X02

)]
,

Ma1|1 = 1

2

[
13 + (−1)a1

(
3
√

2

8
Z01 + 1

2
X12

)]
,

Ma2|2 = 1

2

(
13 + (−1)a2

1

2
(Z02 + Z12)

)
. (A1)
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Here Xi j = |i〉〈 j| + | j〉〈i| and Zi j = |i〉〈i| − | j〉〈 j| are Pauli
operators acting on the subspace spanned by |i〉 and | j〉.
These measurements are jointly measurable, and a parent
with eight elements is given by Ca0a1a2 = 3

8 |φa0a1a2〉〈φa0a1a2 |,
where∣∣φa0a10

〉 = (−1)a0 cos
π

8
|a1〉 + sin

π

8
|a1 ⊕ 1〉,

∣∣φa0a11
〉 = |0〉 + (−1)(a0+a1 )|1〉 + 2(−1)a0 |2〉√

6
. (A2)

Here we will show that it is not possible to find a parent with
seven or fewer nonvanishing elements.

Let us assume that there is a parent with seven elements
and denote by a∗ the string of outcomes corresponding to the
POVM element of the parent which is assumed to vanish, i.e.,
Ca∗ = 0. Consider the sets of dual variables

ρa∗
0x = 1

5 (−1)a∗
x |ψa∗ 〉〈ψa∗ |, (A3)

ωa∗ = 1
5 [(ā∗

0 + ā∗
1 )ā∗

2 + (ā∗
0 + ā∗

1 − 1)ā∗
2]|ψa∗ 〉〈ψa∗ |, (A4)

where ā∗
x ≡ a∗

x ⊕ 1,

|ψa∗ 〉 = (−1)(a∗
0+a∗

1 )αa∗
2
|a∗

1〉 + βa∗
2
|a∗

1 ⊕ 1〉
+ (−1)a∗

0a∗
1 γa∗

2
|2〉, (A5)

and (αa∗
2
, βa∗

2
, γa∗

2
) are amplitudes which will be specified

shortly. Direct substitution shows that for any choice of

(αa∗
2
, βa∗

2
, γa∗

2
), for all a∗,

ωa∗ +
∑

x

Da(0|x)ρa∗
0x � 0 ∀ a �= a∗,

1 � tr
∑

x,a �=a∗
Da(0|x)ρa∗

0x + 7 tr ωa∗
,

(A6)

which shows that ρa∗
0x and ωa∗

are feasible solutions for the
dual problem (13).

Choosing

(
αa∗

2
, βa∗

2
, γa∗

2

) =
{

(1, 0, 0) if a∗
2 = 0(√

2
4 ,

√
2

4 ,
√

3
2

)
if a∗

2 = 1
(A7)

leads to

tr
∑

x

ρa∗
0x Ma|x + tr ωa∗ =

{
4−3

√
2

80 if a∗
2 = 0

12−8
√

6−(−1)a∗1 3
√

2
320 if a∗

2 = 1,

(A8)

which is negative in all cases. This provides the required proof
that it is impossible to find a parent for the set of measure-
ments (A1) with seven or fewer elements. In particular, we
have demonstrated a feasible solution to the dual problem that
obtains a negative value, which implies that the solution of
the primal problem is negative (and hence no parent exists).
Our construction works for all eight choices of parents with
(at least) one element vanishing.
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