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Abstract Introduction: Machine learning (ML) may harbor the potential to capture the metabolic complexity

in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to cate-
gorize AD when compared to CSF biomarkers.
Methods: This study analyzed samples from 242 cognitively normal (CN) people and 115 with
AD-type dementia utilizing plasma metabolites (n 5 883). Deep Learning (DL), Extreme Gradient
Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models
were internally validated using Nested Cross Validation (NCV).
Results: On the test data, DL produced the AUC of 0.85 (0.80–0.89), XGBoost produced 0.88 (0.86–
0.89) and RF produced 0.85 (0.83–0.87). By comparison, CSF measures of amyloid, p-tau and t-tau
(together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87,
respectively.
Discussion: This study showed that plasma metabolites have the potential to match the AUC of well-
established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts
are needed to validatewhether this specific panel of bloodmetabolites can separate AD from controls,
and how specific it is for AD as compared with other neurodegenerative disorders.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

At present, the diagnosis of Alzheimer disease–type de-
mentia (AD) is based on protein biomarkers in cerebrospinal
fluid (CSF) and brain imaging together with a battery of
cognition tests. Diagnostic tools based on CSF collection
are invasive while brain-imaging tools are still costly,
and therefore, there is a need to identify noninvasive
tools for early detection as well as for measuring disease pro-
gression.

In recent years, an increasing number of studies have
examined blood metabolites as potential AD biomarkers
[1–4]. The advantages of looking at blood metabolites are
that they are easily accessible but also that they represent
an essential aspect of the phenotype of an organism and
hence might act as a molecular fingerprint of disease
progression [5,6]. Therefore, blood AD markers could
potentially aid early diagnosis and recruitment for trials.

Here we utilized data generated as part of the European
Medical Information Framework for AD Multimodal
Biomarker Discovery (EMIF-AD) previously reported in
full in Kim et al. [7]. As discussed in that paper, metabolite
levels were measured using liquid chromatography–mass
spectroscopy (LC-MS) to cover ca. Eight hundred metabo-
lites and these metabolites related to CSF biomarkers of
AD commonly used in clinical research including trials,
and increasingly in clinical practice, as part of the diagnostic
work up. Here we explore the potential of different Machine
Learning (ML) algorithms to identify those individuals with
AD from dataset and to compare the effectiveness of blood-
based metabolites as an indicator of clinical diagnosis to that
of CSF markers. In this study we employed two state-of-the-
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art ML algorithms—Deep Learning (DL) and Extreme
Gradient Boosting (XGBoost)—and compared these to the
more commonly utilized Random Forest (RF) algorithm.
Fig. 1. Shows the AUC values for the XGBoost, RF and DL models.

XGBoost performed best with metabolite predictors in the EMIF cohort.
2. Methods

This study accessed data previously generated from 242
samples from cognitively normal (CN) individuals and 115
from people with AD-type dementia (AD) samples in
which diagnosis was based on clinical diagnosis. Details
on the subjects, clinical and cognitive data, as well as mea-
surements of AD pathological markers have been
described elsewhere [7,8]. The metabolomics data em-
ployed here was accessed in the EMIF-AD portal and the
acquisition and processing details can be found via open
access in [7]. In short, the EMIF-AD cohort is a collated
cohort making use of existing data and samples collected
in 11 different studies across Europe, with the aim to
discover novel diagnostic and prognostic markers for pre-
dementia AD.

In the current study, the main objective was to use state-
of-the-art ML classification algorithms to build CN versus.
AD predictive models using blood metabolites. For this pur-
pose, we employed DL and XGBoost. Additionally we also
employed the more popularly used RF algorithm. These
models were compared in terms of binary classifiers with
Area Under the Curve (AUC) in Receiver Operating Charac-
teristic (ROC) curves.

The metabolites with more than 45% missing values
were discarded. The remaining missing values were
handled with imputation methods based on the k-nearest
neighbor (RF and DL), or internally by the classification al-
gorithm (XGBoost). Models were built and evaluated using
a Nested Cross Validation (NCV), which used 9/10 data
folds for model training and optimization in an inner
cross-validation, and 1/10 data folds for model testing in
an outer cross-validation. The process was repeated 10
times, for each of the test data folds.

The analysis was further extended by assessing the stabil-
ity of the AUC performance with Monte Carlo (MC) simula-
tions consisting of 50 repeated similar NCVexperiments. As
such, multiple models were built on multiple samples in the
NCV and MC, using metabolite predictors selected on the
basis of their capability to discriminate CN versus AD as
measured by the Relief algorithm [9] applied on training
data in combination with 500 permutations of the outcome
variables’ values. This method computes the predictors’
importance defined as the standardized Relief score, accord-
ing to Measuring Predictor Importance chapter of [10]. Part
of the prediction modeling methodology in this study was
adapted after [11], with different algorithms, and followed
recommendations from [10,12]. The analysis was carried
out using R software [13]. Pathway analysis was performed
on the top 20 ranked metabolites using MetaboAnalyst 4.0
[14]. The algorithms were run on four servers with 6-core
Xeon CPUs and 336 GB RAM.
3. Results

In this study, we analyzed metabolite data derived from
blood samples from 357 participants (CN n 5 242, AD
n5 115) previously reported in Kim et al. [7]. Demographic
and clinical data can be found in [7]; in short, there was no
difference in gender while AD participants were older
when compared with CN participants.

On the test data, the DL model produced a Receiver
Operating Characteristic (ROC) Area Under the Curve
(AUC) value of 0.85 with its 95% confidence interval
(CI) ranging between 0.8038 and 0.8895. The XGBoost
model produced the AUC value of 0.88 (95% CI [0.8619,
0.8903]). When the classifier model RF was employed,
the resulting AUC was 0.85 (95%CI [0.8323, 0.8659]).
Fig. 1 illustrates ROC curves obtained from the three ML
models.

The MC simulation conducted with XGBoost, which
was the superior predictive model in our analysis, led to a
Gaussian distribution of the AUC values according to
[11] and as confirmed by Shapiro-Wilk test (P
value 5 .6819). The 50 AUC values obtained in MC had
a minimum of 0.8614, a maximum of 0.8923, a mean of
0.8761, a median of 0.8766 and a standard deviation of
0.0072. The t-test showed that the true mean of AUC for
XGBoost applied on plasma metabolites was not lower
than 0.87 (P value 5 1.265 ! 10207).

For comparison, we also investigated the levels of am-
yloid, p-tau and t-tau, to which we added also age and
gender, and their prediction for clinical AD versus CN.
XGBoost models were built in the same manner as for
metabolite predictors. Together with age and gender,
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amyloid led to AUC 0.78 (95%CI [0.7626, 0.8013]); p-tau
led to AUC 0.83 (95%CI [0.8188, 0.8470]); and t-tau led
to AUC 0.87 (95%CI [0.8583, 0.8854]). From the mean
AUC for metabolites and for amyloid, p-tau and t-tau
calculated individually, the t-tests showed superior
values for metabolites (P value,2.2 ! 10216,
P value,2.2 ! 10216 and P value 5 .005921, respec-
tively).

The top 20 ranked predictors out of the 347 selected by
the method presented in the previous section are shown in
Fig. 2.

Pathway analyses revealed that the Nitrogen pathway was
overrepresented (qFDR5 0.004) within the panel. Molecules
that were captured as the 20 top ranking predictors are dis-
cussed in the next section.
4. Discussion

Machine Learning applied to healthcare is increasingly
enabled by the advent of high-performance computing and
the development of complex algorithms. In this study, we
employed two state-of-the-art algorithms, DL and
XGBoost, and a more conventional algorithm, RF, to obtain
high accuracy models to predict AD versus CNwith metab-
olites as predictors. Our study showed that the best model
was based on XGBoost [15], which is an enhanced form
of Gradient Boosting Machines methods based on decision
trees [12]. In our study RF and DL achieved comparable
Fig. 2. The x-axis shows the top 20 ranked predictors, and the y-axis shows the pr

Measuring Predictor Importance chapter of [10].
AUC. DL algorithms are known to often take advantage
of large and/or unstructured data (such as images) to pro-
duce more accurate category discrimination/prediction.
In a study using the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) data for AD prediction, XGBoost
demonstrated superior results (AUC 5 0.97 (0.01) when
including imaging parameters (MRI and PET) as predictors
and when compared to RF, Support Vector Machines,
Gaussian Processes and Stochastic Gradient Boosting
[16]. In another study where cognition and MRI were
used as predictors, Kernel Ridge Regression was performed
to R2 5 0.87 (0.025) when cognition and MRI predictors
were included [17].

Pathway analyses using the top 20 AD predicting metab-
olites derived from the Relief method showed that the nitro-
gen pathway was overrepresented. Some of the molecules
selected have been reported in metabolomics studies and
have been implicated in neurodegeneration: dodecanoate,
which is a C12 fatty acid, was found correlated to longitu-
dinal measures of cognition in the ADNI cohort [3] and so
was the bile acid glycolithocholate, which was associated
to both AD and cognition measures (ADAS-Cog13) in
one of the biggest cross-sectional studies on cognition,
AD and the microbiome [18]. Plasmalogens were also
found in decreased levels in our cohort in agreement with
an earlier report [19]. The amide form of vitamin B3, nico-
tinamide, has been implicated in both neuroprotection and
neuronal death [20].
edictors’ importance computed as the standardized relief score according to
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New metabolites that could be of interest and have not
been previously reported as related to AD were phytanate
and furoylglycine. The former is a known neurotoxin which
impairs mitochondrial function and transcription [21]. Furo-
ylglycine is a metabolite which, as lithocholic acid, is mainly
synthesized by the microbiome and has been reported as a
biomarker of coffee consumption [22].

A limitation of our study is that it does not include an
external validation due to the size of the cohort. However,
we implemented a NCV procedure repeated 50 times in a
MC simulation that led to an extended internal validation
with prediction accuracy of cases. Further studies will assess
the performance of ratios/combinations of CSF markers and
metabolites, life-style factors and disorders commonly
found in the elderly, together with testing the specificity
for this specific panel in other neurodegenerative (e.g., PD,
FTD), neurological (e.g., stroke) and psychiatric (e.g.,
depression) disorders associated with aging.

The intent of this paper was to compare the performance
of different ML algorithms to identify people with AD from
cognitively unimpaired individuals. Here we show first that
all three approaches used demonstrate good discriminatory
power, second that XGBoost is somewhat more effective
in this particular dataset than RF and DL and third, that
this accuracy for clinical diagnosis is broadly similar to
that achieved by CSF markers of AD pathology. The lack
of a replication and validation dataset limits the interpreta-
tion of this finding, but nonetheless, the strong prediction
of diagnostic category from a blood-based metabolite
biomarker set is further evidence of the potential of such ap-
proaches to complement other biomarkers in identification
of people with likely AD.
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RESEARCH IN CONTEXT

1 Systematic review: The authors reviewed the litera-
ture using PubMed and reported key publications.
Most AD biomarker studies employing state-of-the-
art machine learning (ML) techniques utilized neu-
roimaging data. Those which looked at blood me-
tabolomics data were small and used clinical
diagnosis as an endpoint. Subsequently, we explored
the potential of state-of-the art ML algorithms
including Deep Learning and Extreme Gradient
Boosting to test the performance of blood metabolite
levels to clinical diagnosis and compared to CSF
biomarkers.

2 Interpretation: The results in here show that with
state-of-the-art ML algorithms, blood metabolites
have the potential to match the CSF markers of AD
pathology on identifying people with AD from
cognitively unimpaired individuals. All the ML al-
gorithms employed showed good discriminatory po-
wer.

3 Future directions: Results of this study should be
replicated and validated using an independent dataset.
Further studies will also aim to assess the perfor-
mance of ratios/combinations of CSF markers and
metabolites, life-style factors and disorders
commonly found in the elderly, together with testing
the specificity for this specific panel in other neuro-
degenerative (e.g., PD, FTD), neurological (e.g.,
stroke) and psychiatric (e.g., depression) disorders
associated with aging.
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