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Abstract

We define a program semantics that is preserved by dependence-based slicing
algorithms. It is a natural extension, to non-terminating programs, of the semantics
introduced by Weiser (which only considered terminating ones) and, as such, is an
accurate characterisation of the semantic relationship between a program and the
slice produced by these algorithms.

Unlike other approaches, apart from Weiser’s original one, it is based on strict
standard semantics which models the ‘normal’ execution of programs on a von Neu-
mann machine and, thus, has the advantage of being intuitive. This is essential
since one of the main applications of slicing is program comprehension. Although
our semantics handles non-termination, it is defined wholly in terms of finite trajec-
tories, without having to resort to complex, counter-intuitive, non-standard models
of computation. As well as being simpler, unlike other approaches to this prob-
lem, our semantics is substitutive. Substitutivity is an important property because
it greatly enhances the ability to reason about correctness of meaning-preserving
program transformations such as slicing.

Preprint submitted to Elsevier 25 November 2009



1 Introduction

Program slicing is a program transformation technique for extracting an exe-
cutable sub-program, the slice, from a larger program. The slice must preserve
some semantic property of the program. Typically, this property is defined in
terms of the values of a set of variables at a point of interest in the program.

Comprehensive surveys of program slicing, applications, techniques and re-
sults can be found in several papers [6,7,16,22,42,48]. Applications of slicing
include program comprehension [20], software maintenance [18], testing and
debugging [2,23], virus detection [33], integration [8], refactoring [30], restruc-
turing, reverse engineering and reuse [9]. There are many forms of program
slicing: static [46], dynamic [31] and conditioned [9]; forward and backward
[26]; amorphous and syntax preserving [20]; non-termination removing [44,45]
and non-termination preserving [37].

Historically, slicing was developed first as an algorithm; practice preceded the-
ory. The most well-known and widely used slicing algorithms are variants of
Weiser’s Algorithm [46] and the pdg algorithm of Horwitz and Reps [25].
These algorithms are essentially the same and produce identical results be-
cause they are both based on the notions of data and control dependence [17].

Recent developments in the application of slicing to reactive programs [24] and
finite state machine models [32] require slices of programs and models that
may fail to terminate. This has led, for example, to new definitions of control
flow for such non-terminating programs and algorithms for computing slices
using them [36,37]. This interest in slicing non-terminating programs provides
renewed impetus to search for a sound theoretical foundation for slicing non-
terminating programs. The problem of correctly and precisely accounting for
the behaviour of slices of non-terminating programs remains a current topic
of research.

Problems arise in trying to define the semantic relationship that slicing must
preserve in the case of non-termination. Some slicing theories simply ignore
non-terminating programs [1,3–5,45,46]. This is no longer acceptable since
programs where non-termination is both normal and desirable – such as reac-
tive systems – are increasingly common. As we demonstrate, existing slicing
theory faces problems when non-termination is introduced, but the associ-
ated slicing algorithms often produce sensible slices. This suggests that the
semantics of slicing non-terminating programs should be a natural extension
of existing theory.

The primary contributions of this paper can be summarised as follows:

(1) We introduce a new, substitutive, intuitive, finite trajectory-based seman-
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tics, ~T , of programs (Section 4.2). This semantics removes the need to
consider complex, non-intuitive concepts such as transfinite computation,
where programs are thought of as continuing to execute after finishing
infinite loops.

(2) We prove (Theorem 4.1) that its induced equivalence, ~S(V,l), is a nat-
ural extension, to non-terminating programs, of the equivalence, S(V,l),
introduced by Weiser [46] that only considers terminating programs.

(3) We prove (Theorem 4.2) that slicing algorithms based on traditional data

and control dependence preserve ~T , thereby showing that the new se-
mantics captures the behaviour of program slicing algorithms for both
terminating and non terminating programs.

In Section 2, we consider previous attempts to define the semantics that is
preserved by dependence-based slicing algorithms. First we describe the finite
trajectory semantics first introduced by Weiser [46] and later used by the
authors [5,1,3,4]. We then consider alternative approaches which involve non-
standard semantics. In particular, we consider the approaches of Cartwright
and Felleisen [10], Giacobazzi and Mastroeni [19], and Nestra [35].

In Section 3, we illustrate the various shortcomings of previous approaches,
including the lack of applicability of Weiser semantics to non-terminating pro-
grams and problems with the lazy and transfinite approaches including their
lack of substitutivity, their undefined control, and their complex and counter-
intuitive nature. These shortcomings motivate the need for a new semantics.

Our new semantics and equivalence is introduced in Section 4. In Subsection
4.2, we define ~T , and in Subsection 4.3, introduce finite trajectory backward
slice equivalence, ~S(V,l), based on ~T and prove that it is a natural extension,
to non-terminating programs, of static backward equivalence first introduced
by Weiser. In Subsection 4.4 we prove the main result – that dependence-
based slicing algorithms produce slices which are equivalent to the original
with respect to ~S(V,l).

In Section 5, we compare our new approach with past contributions, proving
that unlike these approaches, it has the essential property of substitutivity
(Theorem 5.1) and argue also that it is simpler and more intuitive. Finally, in
Section 6 we conclude and consider areas for future work.

2 Background and Related Work

In this section, we briefly describe previous attempts to define the semantics
that is preserved by dependence-based slicing algorithms. First we describe the
finite trajectory semantics first introduced by Weiser [46] and later used by the
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authors [5,1,3,4]. Following this, we describe the non-standard semantics-based
approaches of Cartwright and Felleisen [10], Giacobazzi and Mastroeni [19] and
Nestra [35].

2.1 Weiser’s Finite Trajectory Semantics

Before a program is sliced, a slicing criterion must be specified. A slicing
criterion is a pair, (V, l) where V is a set of variables of interest and l is a
label representing the program point of interest. The slicing algorithm will
return a program which agrees with the program being sliced at the point
of interest, l, with respect to the variables of interest V every time both the
original program and the slice pass through l. This idea is expressed using
trajectories [46,47]:

Definition 2.1 (Trajectory) A trajectory is a finite sequence of label, state
pairs:

(l1, σ1)(l2, σ2) . . . (lk, σk)

If a program gives rise to trajectory (l1, σ1)(l2, σ2) . . . (lk, σk) this means that
the ith statement that was executed was labelled li and the resulting state 1 is
σi.

Since a slice only needs to preserve the behaviour of the program with respect
to the variables of interest, Weiser uses the concept of state restriction:

Definition 2.2 (Restriction of a state to a set of variables) Given a state,
σ and a set of variables V , σ↓V restricts σ so that it is defined only for variables
in V :

(σ↓V )x =

σ x if x ∈ V,
⊥ otherwise.

Since the programs need only to agree at the slicing criterion, Weiser intro-
duced the idea of restricting a trajectory to a slicing criterion (V, l). To do
this, first delete all pairs in the trajectory whose label component is not l and
for the ones that are left restrict the state component of the pair to V as just
defined.

First we define how to project a single element of a trajectory onto a slicing
criterion:

1 Originally, in Weiser’s definition, σi represents the state before executing the
instruction at label li.
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Definition 2.3 For a label l′ and state σ the projection of the trajectory se-
quence element (l′, σ) to the slicing criterion (V, l) is

(l′, σ)↓(V, l) =

(l′, σ↓V ) if l′ = l,

λ otherwise,

where λ denotes the empty string.

Definition 2.4 (Projection of a trajectory to a slicing criterion) The
projection of the trajectory T = (l1, σ1)(l2, σ2) . . . (lk, σk) to the slicing criterion
(V, l) is

Proj(V,l)(T ) = (l1, σ1)↓(V, l) . . . (lk, σk)↓(V, l)

Having set up the semantics, Weiser then defines the property which captures
the relationship between a program and its slice.

Definition 2.5 (Weiser’s backward static slice) A slice s of a program p
on a slicing criterion (V, l) is any executable program with the following two
properties:

(1) s can be obtained from p by deleting zero or more statements.
(2) Whenever p halts on an input state σ with a trajectory T then s also halts

on input σ with trajectory T ′ where Proj(V,l)(T ) = Proj(V,l)(T
′).

Binkley et al. restate this as a semantic equivalence, S(V,l), for static backward
slicing [5,1,3,4] as follows:

Definition 2.6 (Static backward equivalence) Given two programs p and
q, and slicing criterion (V, l), p is static backward equivalent to q, written
p S(V,l) q, if and only if for all input states σ, when the execution of p in
σ gives rise to a trajectory T σp and the execution of q in σ gives rise to a
trajectory T σq , then Proj(V,l)(T

σ
p ) = Proj(V,l)(T

σ
q ).

Reps and Yang [38], in effect, show that slices produced by dependence-based
algorithms such as Weiser’s preserve static backward equivalence.

Despite the fact that Weiser makes no claims for the behaviour of his slic-
ing algorithm in the presence of non-termination, several authors, including
Weiser himself, noticed that slices produced from a non-terminating program
by his algorithm behave in a consistent, compelling and meaningful manner.
In Figure 1 for example, even though the program, p1(a) being sliced does not
terminate, the behaviour of the slice p1(b) agrees with p1(a) at the slicing cri-
terion i.e., they both pass through the slicing criterion the same number of
times and the values of x agree each time. Under standard strict semantics,
however, the meaning of both these programs is simply undefined: the same
as any other non-terminating program. (Even ones which do not agree at the
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1 while( true ) {

2 x = getTemp();

3 y = getPressure();

4 if( y > pThreshold ) {

5 pressureAlarm();

}

6 if( x > tThreshold ) {

7 checkpoint(x);

}

}
(a) A reactive program: p1(a)

1 while( true ) {

2 x = getTemp();

6 if( x > tThreshold ) {

7 checkpoint(x);

}

}
(b) The Weiser slice, p1(b) at slicing cri-
terion (x, 7)

Fig. 1. A reactive program p1(a) and Weiser’s slice of it p1(b) Although p1(a) is very
simple, it is typical of the kinds of infinite computation found in reactive systems.
Weiser’s slice, p1(b) with respect to slicing criterion (x, 7) is ‘sensible’, even though
Weiser’s semantics only applies to terminating programs.

slicing criterion in this way.) This shows that standard strict semantics does
not precisely capture the behaviour preserved by slicing algorithms.

2.2 Non-standard Semantic Approaches to Program Slicing

The observation that dependence-based slicing algorithms do not preserve
standard semantics led several authors to investigate non-standard semantics
in an attempt to capture more precisely the behaviour preserved by these
algorithms.

2.2.1 The Lazy Semantics of Cartwright and Felleisen

Cartwright and Felleisen [10] were the first to introduce a non-standard se-
mantics for program slicing. In this semantics, they allow partially defined
states, i.e., ones where some variables are mapped to undefined (⊥), repre-
senting non-termination and others are mapped to proper values. The value
of a variable becomes ⊥ if it is assigned to inside an infinite loop. Programs,
however, continue to execute after infinite loops and hence the value of a vari-
able can ‘recover’ from being ⊥. For example,in the program p2(c) in Figure 2,
variable x has final value undefined, but variable y has final value 1. This
shows that the semantics is not strict. Under standard strict semantics, of
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1 while( true ) {

2 x = x + 1;

}

3 x = 1;

(a) Program p2(a)

1 while( true ) {

2 x = x + 1;

}

(b) Program p2(b)

1 while( true ) {

2 x = x + 1;

}

3 y = 1;

(c) Program p2(c)

Fig. 2. Both the lazy semantics of Cartwright and Felleisen and the transfinite
computation semantics of Giacobazzi and Mastroeni give the final value of x to
be 1 in program p2(a), but leave it undefined in program p2(b). The value for x is
undefined in program p2(c) but the final value of y is 1 in both semantics.

course, the program fails to terminate and the final values of both x and y are
undefined.

Under Cartwright and Felleisen’s semantics, when slicing on y, at the end of
program p2(c) the infinite loop can be deleted since it has no effect in lazy
semantics on the final value of y. This is exactly what happens using slicing
algorithms such as Weiser’s.

2.2.2 The Transfinite Semantics of Giacobazzi and Mastroeni

Giacobazzi and Mastroeni [19] argue that if a semantics is to be useful for
modelling kinds of program manipulation such as slicing it should be be able
to capture semantic information ‘beyond infinite loops’ . They use transfinite
state traces of programs [29] and show the existence of such semantics using
domain equations. They introduce a non-standard semantics, called transfi-
nite semantics using a metric structure on their value domains. Transfinite
semantics of a program is defined in terms of the set of all possibly transfi-
nite computations: computations whose length can be any ordinal, finite or
infinite.

Figure 3 gives an example: executing program p3(a) produces a concatenation of
an infinite trajectory with a finite or infinite trajectory (depending on whether
the second loop executes a finite or infinite number of times). In program p3(b),
we have an infinite concatenation of finite or infinite trajectories (the inner
loop may execute any number of times on each iteration of the outer loop.).

2.2.3 The Semantics of Nestra

Nestra [35] defines a new transfinite semantics based on the semantics of Gia-
cobazzi and Mastroeni [19]. Unlike the semantics of Giacobazzi and Mastroeni
[19] where all the states observed during the infinite execution are used, Nestra
shows that it suffices to consider a subset of these states. Nestra shows that
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1 while( true ){

2 a = a + 1;

}

3 while( y != z ){

4 y = y - 1;

}

5 x = 2;

(a) Program p3(a)

1 while( true ){

2 a = a + 1;

3 while( y != z ){

4 y = y - 1;

}

}

5 x = 2;

(b) Program p3(b)

Fig. 3. The transfinite trajectories approach of Giacobazzi and Mastroeni. In pro-
gram p3(a) there is the concatenation of an infinite trajectory with a finite or infinite
trajectory (depending on whether the second loop executes a finite or infinite num-
ber of times). In program p3(b) we have an infinite concatenation of finite or infinite
trajectories (the inner loop may execute any number of times on each iteration of
the outer loop.)

1 while( true ) {

2 x = 0;

3 x = 1;

}
(a) Program p4(a)

1 while( true ) {

3 x = 1;

}
(b) Program p4(b)

Fig. 4. In the semantics of Giacobazzi and Mastroeni, the final value of the variable
x in p4(a) is undefined but in p4(b) it is 1. In the semantics of Nestra, however, the
final value of x is 1 in both cases.

there is no need to consider the traces resulting from the execution of each
atomic statement inside an infinite loop and that it is enough to consider only
the states observed at the top point of the loop. Nestra provided a theoreti-
cal background to show that the use of these states is enough to capture the
standard semantic anomaly. Figure 4 illustrates the difference. When using
the semantics of Giacobazzi and Mastroeni [19], the final value of the variable
x when executing program p4(a) is undefined but in p4(b) it is 1. The semantics
of Nestra [35], however, the final value of x is 1 in both cases.

3 The Shortcomings of Previous Approaches

In this section we describe the problems relating to the approaches described
in Section 2.
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3.1 Problems with Weiser’s Finite Trajectory Semantics

The trajectories in Definition 2.6 are finite, hence static backward equivalence
is only defined for programs which terminate. If p S(V,l) q then p and q need
only agree with respect to (V, l) in initial states where they both terminate.
Thus if there is no initial state in which p and q both terminate then vacuously
p S(V,l) q. This means that S(V,l) is not an equivalence relation on the set of
all programs. It is only an equivalence relation on sets of programs which all
terminate in the same set of initial states. (The set of programs which always
terminate is an example of such a set).

Slicing algorithms however, can be applied to any program; not just to pro-
grams which terminate in all states but also to programs whose termination
conditions are not known. In these cases, we cannot guarantee that static
backward equivalence is preserved. This is a major shortcoming of Weiser’s
semantics.

3.2 Problems with the Lazy and Transfinite Approaches

In this subsection, we highlight three problems relating to the lazy and trans-
finite approaches:

(1) the lack of substitutivity,
(2) the problems of undefined control, and
(3) their counter-intuitive nature.

3.2.1 Lack of Substitutivity

Substitutivity [27,28,39,43], simply means that we can substitute a part of
a program by a semantically equivalent part and still preserve the semantics
of the original program. It is a very natural property required of a seman-
tics [15,20,21], especially if the semantics is to be used for arguing about the
correctness of program transformations such as slicing. (In Theorem 5.1 we
show that the finite trajectory semantics introduced in this paper is, indeed,
substitutive.)

Danicic et al. [15], however, show that neither the semantics of Giacobazzi and
Mastroeni [19] nor that of Cartwright and Felleisen [10] is substitutive. This
is illustrated in Figure 5 by the substitution on line 6. In program p5(a), the
value of the variable x after executing the infinite loop is undefined, and thus,
so is the value of the if predicate. Therefore the final value of the variable
y demands the evaluation of an undefined predicate. For this reason the final
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1 x = 1;

2 y = 1;

3 while( true ) {

4 x = -x;

}

5 if( x > 0 ) {

6 y = y;

7 } else {

8 x = -x;

}
(a) Program, p5(a)

1 x = 1;

2 y = 1;

3 while( true ) {

4 x = -x;

}

5 if( x > 0 ) {

6 skip;

7 } else {

8 x = -x;

}
(b) Program p5(b)

Fig. 5. The programs p5(a) and p5(b) are not equivalent under either Cartwright and
Felleisen’s lazy semantics, under Giacobazzi and Mastroeni’s transfinite semantics,
or under Nestra’s transfinite semantics. For program p5(a) both semantics give the
final value of y as ‘undefined’. For program p5(b) they both give the final value of y to
be 1. However, the statements y=y and skip are semantically equivalent. Therefore
none of these semantics is substitutive.

value of y is undefined when using either the semantics of Giacobazzi and
Mastroeni [19], that of Nestra [35], or that of Cartwright and Felleisen [10].
Program p5(b) in Figure 5(b) is obtained by replacing the statement y=y; on
line 6 of p5(a) with the semantically equivalent skip. However, in program
p5(b), the semantics of Giacobazzi and Mastroeni [19], the semantics of Nestra
[35], and the semantics of Cartwright and Felleisen [10] give the final value of
y to be 1. This shows that none of these three semantics are substitutive.

The non-substitutivity of the semantics of Cartwright and Felleisen and Gi-
acobazzi and Mastroeni was corrected by Danicic et al. [15] with a modified
lazy semantics for slicing at the end of a program. Under the lazy semantics
of Danicic et al., the final value of y is the same as its initial state, i.e., 1,
for both versions of the program. While this approach correctly models the
behaviour of Weiser’s slicing algorithm for slicing criteria whose label is the
end of a program, it does not cater for slicing at arbitrary points in the middle
of the program.

3.2.2 Problems with Undefined Control

The transfinite computation approach appears to encounter problems when
flow after an infinite loop depends on values computed by an infinite loop.
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1 while( true ) {

2 y = y + 1;

}

3 while( y != z ) {

4 y = y - 1;

}

5 x = 2;

(a) Program p6(a)

1 while( true ) {

2 y = y + 1;

3 while( y!= z ) {

4 y = y - 1;

}

}

5 x = 2;

(b) Program p6(b)

Fig. 6. The transfinite trajectories approach of Giacobazzi and Mastroeni. Examples
where the number of iterations of a loop depend upon a previously undefined value.

The trajectory of programs like:

while(true) x = x+ 1; if p(x) p1 else p2

does not appear to have been considered. After execution of the infinite loop
the final value of variable x is undefined. Therefore we do not know whether
p1 or p2 will be executed.

If both are allowed, we would have to consider the semantics of program to
be a set of trajectories, not a single trajectory as implied by Giacobazzi and
Mastroeni. In the case of the programs in Figure 5 each initial state would
produce two trajectories: One that takes the True branch of the if and the
other taking the False branch. We would then require the program and its
slice to agree on all of the trajectories in these sets.

Using sets of trajectories to correct the problem of values undetermined after
an infinite loop leads to more problems. For example, in program p6(a) in
Figure 6, the set of trajectories consists of the infinite trajectory from the
first loop followed by all possible finite and infinite length trajectories from
the second loop. This set of trajectories is infinite. We suspect the problem
of having to ‘match up’ which of these trajectories would have to agree when
slicing would be difficult.

Matters are even more complex for program p6(b) in Figure 6 where we have
a loop within a loop. As the values of x and y are not known a priori the
inner loop may execute any number of times – including infinitely – on each
iteration of the outer loop.
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3.2.3 The Semantics is Counter-Intuitive

Program semantics [41] is simply a mapping from the set of all programs
to some co-domain: another set of mathematical objects. Trivial semantics
can, of course, be defined; for example, a semantics that maps all program
to the same object, or a semantics that maps every program to itself. These
semantics, although well-defined, are not useful because they do not give us
any insights into the behaviour of the programs they represent. Similarly, a
semantics which given a slicing criterion, (V, l), simply maps every program
to the result of applying Weiser’s algorithm to it at (V, l) is well-defined.
Although, by definition, it captures Weiser’s algorithm more precisely than
any other, it does not give us any insights into the behaviour preserved by
the algorithm. For a semantics to be useful, its co-domain must correspond
to some intuition about how the program, at least conceptually, executes.
For example, in standard semantics, the co-domain corresponds to state-to-
state mappings, where the state is a mapping representing the current values
of all the variables. A problem with the lazy and transfinite approaches is
that they define a semantics of programs that does not correspond to the
actual execution of a program on a computer. It is a conceptual model that
requires the reader, for example, to imagine programs continuing to execute
after executing infinite loops (and even to imagine the execution of an infinite
loop an infinite number of times). The fact that a slice preserves such a counter-
intuitive semantics means that it is very difficult for the user of a slicing
algorithm to envisage the connection between the original program and its
slice. Clearly, for a semantics to be useful as a way of understanding this
relationship, it is preferable if it is defined in terms of the ‘normal’ execution
of programs on a von Neumann machine, i.e., using standard strict semantics.

In the next section we introduce a new semantics which overcomes these
problems. It is a natural extension of the original semantics introduced by
Weiser [46].

4 The New Trajectory Semantics

In this section, we introduce the new semantics, ~T that is defined over all
programs which extends the previously defined semantics T , which was just
defined for terminating programs. We first define our simple language with
labels, sub-programs, and quotient programs:
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Γ ::= l : skip |

l : x=e |

Γ1; Γ2 |

if (l : b) Γ1 else Γ2 |

while (l : b) Γ1

where l denotes a label, e denotes an arithmetic expression and b denotes a
boolean expression. We call an element of this language a program, and identify
Γ with the set of all programs. The sub-programs of a program p are p itself
and the sub-programs of all its components Γi, above.

Let n be a sub-program of p. If we replace n by skip then we obtain a quotient
program q of p by n. (If n is a component of the above disjunction then we
may, equivalently, simply delete it instead.) The sub-programs of q that are
also sub-programs of p are said to survive.

We define trajectory semantics denotationally. Denotational semantics [40,41],
enables mathematical meaning to be given to programming languages. In
standard denotational semantics a state, σ ∈ Σ, is a mapping from the set
V of program variables to the set V of values. For example, the function
σ = {x 7→ 1, y 7→ 2, z 7→ 3} is the state where the value of x is 1, the value of
y is 2 and the value of z is 3.

4.1 Standard Trajectory Semantics

Before we define our new semantics, ~T , we first define standard trajectory
semantics, T . This is the intuitive trajectory semantics where we allow trajec-
tories to be infinite (but not transfinite) in order to handle non-termination.
Terminating programs will give rise to finite trajectories and non-terminating
programs to countably infinite trajectories in the natural way.

Standard trajectory semantics, T , is a map that takes a program and a state
to a trajectory, i.e.,

T : Γ→ Σ→ Seq(L× Σ)

where Γ is the set of all programs, Σ is the set of all states, and Seq(L × Σ)
is the set of all finite and infinite sequences of (label, state) pairs.

In standard trajectory semantics we allow trajectories to be countably infinite.
If p is a non-terminating program in state σ, then the trajectory of all programs
of the form p; q (where q is an arbitrary program) will be equal to the trajectory
of p in state σ, since q is never reached. We now give rules which define T for
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each syntactic category:

• For skip statements:

T [[l : skip]]σ = 〈(l, σ)〉

where l is the label and 〈(l, σ)〉 represents the singleton sequence consisting
of the pair (l, σ).
• For assignment statements:

T [[l : x=e]]σ = 〈(l, σ[x← E [[e]]σ])〉

where E [[e]]σ means the value resulting from evaluating expression e in state
σ and σ[x ← E [[e]]σ] is the state σ ‘updated’ with the maplet that takes
variable x to this new value.
• For sequences of statements:

T [[p; q]]σ = T [[p]]σ ⊕ T [[q]]σ′

where σ′ is the state obtained 2 after executing p in σ and ⊕ means con-
catenation. Concatenating to the right of an infinite sequence has no ef-
fect, i.e., if a is infinite then a ⊕ b = a, and if A and B are sets then
A⊕B = {a⊕ b | a ∈ A and b ∈ B}.
• For if statements:

T [[if(l : b) p else q]]σ = 〈(l, σ)〉 ⊕ (E [[b]]σ → T [[p]]σ, T [[q]]σ)

where (True → a, b) is a, (False → a, b) is b, and (⊥ → a, b) is the empty
sequence. In other words, for an if statement, the first element of the tra-
jectory is the label of the if in the current state. The rest of the trajectory is
the trajectory of one of the branches depending on the value of the boolean
expression evaluated in the current state.
• For while loops:

T [[while(l : b) p]]σ = T [[if(l : b) {p; while(l : b)p} else skip]]σ

that is, while loops are defined simply in terms of if statements in the

2 Note that σ′ = M[[p]]σ where M : Γ → Σ⊥ → Σ⊥ is the standard denotational
meaning and can be defined in terms of T as follows:

M[[p]]σ =

{
The state component of the last element of T [[p]]σ if T [[p]]σ is finite, or
⊥ otherwise.
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standard way. Alternatively, one may prefer

T [[ while(l : b) p]]σ =

〈l, σ〉 ⊕

T [[p]]σ ⊕ T [[while(l : b) p]](M[[p]]σ) if E [[b]]σ, or

〈〉 otherwise.

Note that if while(l : b) p does not terminate in state σ then the sequence
defined by T [[while(l : b) p]]σ will be countably infinite.

For example, each of the three programs pi (i ∈ {2(a), 2(b), 2(c)}) in Figure 2
has trajectory

T [[pi]]σ = 〈(1, σ)(2, σ1)(1, σ1)(2, σ2)(1, σ2)(2, σ3) . . .〉

for all initial states σ where, for all i, σi = σ[x← (σ(x) + i)]. The trajectories
through program p6(b) in Figure 6 depend on the initial state. Putting σ =
{x 7→ 1, y 7→ 1, z 7→ 0} gives the following trajectory:

T [[p6(b)]]σ = 〈(1, σ)(2, σ′)(3, σ′)(4, σ)(3, σ)(4, σ′′)(3, σ′′)(1, σ′′) . . .〉

where σ′ = {x 7→ 1, y 7→ 2, z 7→ 0} and σ′′ = {x 7→ 1, y 7→ 0, z 7→ 0}.

4.2 The New Finite Trajectory Semantics

Our new finite trajectory semantics, ~T is a function of type:

~T : N→ Γ→ Σ→ Seq(L× Σ)

In essence, it can be thought of as a sequence of semantic functions each of the
same type as T defined in the previous section. The difference is that ~Tn[[p]]σ

will be finite for all n, p, σ. Informally, we can imagine that ~Tn[[p]]σ defines
the trajectory of program p in state σ where all loops are allowed to iterate
at most n times after which they are forced to terminate.

Purely, as an aid to giving some intuition to our semantics ~T , we introduce the
notional n-machine: it is simply a ‘computing engine’ in which all loops are
forced to terminate after n iterations. All programs terminate when executed
on an n-machine. ~Tn[[p]]σ defines the semantics of executing program p in state
σ on an n-machine.

To define ~T we need to unfold while loops to a finite number of iterations. We
do this by simply replacing a while loop by n nested if statements containing
the loop body. Note that in the case of nested loops unfolding does not remove
the loops from the body.
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Definition 4.1 (Loop unfolding) Let l be a label, b be a boolean expression,
and p ∈ Γ. The nth unfolding of the while loop

while (l : b) p

is defined inductively as follows:

W0(l, b, p) = if (l : b) skip else skip

Wn+1(l, b, p) = if (l : b) p; Wn(l, b, p) else skip

As before we now give rules which define ~T for each syntactic category:

• For skip statements:
~Tn[[l : skip]]σ = 〈(l, σ)〉

• For assignment statements:

~Tn[[l : x=e]]σ = 〈(l, σ[x ← E [[e]]σ])〉

• For sequences of statements:

~Tn[[p; q]]σ = ~Tn[[p]]σ ⊕ ~Tn[[q]]σ′

where as before σ′ is the state component of the last element of ~Tn[[p]]σ.
• For if statements:

~Tn[[if(l : b) p else q]]σ = 〈(l, σ)〉 ⊕ (E [[b]]σ → ~Tn[[p]]σ, ~Tn[[q]]σ)

• For while loops:

~Tn[[while (l : b) p]]σ = ~Tn[[Wn(l, b, p)]]σ

Alternatively, the while loop rule can be defined without unfolding as:

~Tn[[while(l : b) p]]σ = ~T 1
n [[while(l : b) p]]σ

where

~T in [[while(l : b) p]]σ =

〈l, σ〉 ⊕

~Tn[[p]]σ ⊕ ~T i+1
n [[while(l : b) p]]σ′ if E [[b]]σ and i 6 n, or

〈〉 otherwise.

where, again, σ′ is the state component of the last element of ~Tn[[p]]σ.
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For example, for program p2(a) in Figure 2 we obtain the finite trajectories

~T0[[p2(a)]]σ = 〈(1, σ)(3, σ[x← 1])〉
~T1[[p2(a)]]σ = 〈(1, σ)(2, σ1)(1, σ1)(3, σ[x← 1])〉
~T2[[p2(a)]]σ = 〈(1, σ)(2, σ1)(1, σ1)(2, σ2)(1, σ2)(3, σ[x← 1])〉

...

where, again, for all i, σi = σ[x← (σ(x) + i)].

The trajectories through program p6(b) in Figure 6, on the other hand, depend
on the initial state. Let σi = {x 7→ 1, y 7→ i, z 7→ 0}, for all i, then:

~T0[[p6(b)]]σ1 = 〈(1, σ1)(5, σ1[x← 2])〉
~T1[[p6(b)]]σ1 = 〈(1, σ1)(2, σ2)(3, σ2)(4, σ1)(3, σ1)(1, σ1)(5, σ1[x← 2])〉
~T2[[p6(b)]]σ1 = 〈(1, σ1)(2, σ2)(3, σ2)(4, σ1)(3, σ1)(4, σ0)(3, σ0)

(1, σ0)(2, σ1)(3, σ1)(4, σ0)(3, σ0)(5, σ0[x← 2])〉
...

Notice that in ~T0[[p6(b)]]σ1 the loop unfolding forces the outer loop to exit

immediately. In ~T1[[p6(b)]]σ1 both loops are forced to exit early. However in
~Tn[[p6(b)]]σ1 for n > 2 the inner loop exits naturally and only the outer loop is
forced to exit.

4.3 Finite Trajectory Backward Slice Equivalence

In this section, having defined ~T , we are now in a position to define the
new equivalence relation: finite trajectory backward slice equivalence, ~S(V,l), on

programs. We prove that ~S(V,l) is, indeed, an equivalence relation and prove
importantly, that it is a natural extension of S(V,l). This means that for always-

terminating programs, ~S(V,l) and S(V,l) are identical relations.

Finite trajectory backward slice equivalence can be defined intuitively in terms
of n-machines: Programs p and q are finite trajectory backward slice equivalent
with respect to slicing criterion (V, l) if for all states σ, there exists a sufficiently
large Nσ, such that for all larger n, when run on an n-machine they will both
pass through l the same number of times and the values of all the variables in
V will agree at corresponding times through l.

Definition 4.2 (Finite trajectory backward slice equivalence) Let p, q ∈
Γ be programs, and let (V, l) be a slicing criterion. Program p is static back-
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ward equivalent to q if and only if

∀σ ∈ Σ, ∃Nσ ∈ N : ∀m > Nσ : Proj(V,l)(~Tm[[p]]σ) = Proj(V,l)(~Tm[[q]]σ).

We write p ~S(V,l) q.

Lemma 4.1 If (V, l) is a slicing criterion then ~S(V,l) is an equivalence relation.

Proof. To prove reflexivity and symmetry is trivial. We now prove transitiv-
ity. Let p, q, r ∈ Γ be programs and (V, l) be a slicing criterion, and suppose

that p ~S(V,l) q and q ~S(V,l) r, i.e.,

∀σ ∈ Σ : ∃Nσ
1 ∈ N : ∀m > Nσ

1 : Proj(V,l)(~Tm[[p]]σ) = Proj(V,l)(~Tm[[q]]σ)

and ∀σ ∈ Σ : ∃Nσ
2 ∈ N : ∀m > Nσ

2 : Proj(V,l)(~Tm[[q]]σ) = Proj(V,l)(~Tm[[r]]σ).

Choose Nσ > max(Nσ
1 , N

σ
2 ) to give

∀m > Nσ : Proj(V,l)(~Tm[[p]]σ) = Proj(V,l)(~Tm[[q]]σ)

∀m > Nσ : Proj(V,l)(~Tm[[q]]σ) = Proj(V,l)(~Tm[[r]]σ)

from which it follows that ∀m > Nσ :

Proj(V,l)(~Tm[[p]]σ) = Proj(V,l)(~Tm[[q]]σ) = Proj(V,l)(~Tm[[r]]σ). �

Lemma 4.2 If p is a program that halts on input state σ then ∃Nσ ∈ N :
∀m > Nσ : ~Tm[[p]]σ = T [[p]]σ.

Proof. Given an input state σ on which p halts, the trajectory T [[p]]σ is finite.
Choose a sufficiently large Nσ that is greater than the number of any iterations
of any loops we encounter during the execution of p on σ. In this case, the
definition of ~TNσ [[p]] reduces to the definition T [[p]], since the only difference in
these definitions are the handling of while loops.

Since Nσ is sufficiently large, the i 6 Nσ condition in the definition of
~T iNσ [[while(l : b) S]] is always true, which makes the difference between the
two definitions disappear. Thus, for the chosen Nσ it holds that ∀m > Nσ :
~Tm[[p]]σ = T [[p]]σ. �

We now show that our new semantic equivalence ~S(V,l) agrees completely with
static backward equivalence when applied to terminating programs. In other
words, ~S(V,l) is a natural extension to non-terminating programs of S(V,l).

Theorem 4.1 For all always-terminating programs p and q and slicing crite-
ria (V, l), p S(V,l) q if and only if p ~S(V,l) q.
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Proof. By Definitions 2.6 and 4.2 we have to show that for all slicing criteria
(V, l), for all always-terminating programs p and q, and for all input states σ,

Proj(V,l)(T [[p]]σ) = Proj(V,l)(T [[q]]σ)

if and only if

∃Nσ ∈ N : ∀m > Nσ : Proj(V,l)(~Tm[[p]]σ) = Proj(V,l)(~Tm[[q]]σ).

Only if: Since we know that p always terminates, by Lemma 4.2 we also know

that there is an Nσ
p such that for all m > Nσ

p , T [[p]]σ = ~Tm[[p]]σ. Similarly,

we know that an Nσ
q exists such that for all m > Nσ

q , T [[q]]σ = ~Tm[[q]]σ. Let
Nσ be the maximum of Nσ

p and Nσ
q . Then, for all m > Nσ it still holds

that T [[p]]σ = ~Tm[[p]]σ and T [[q]]σ = ~Tm[[q]]σ. Inserting these in our original
assumption of Proj(V,l)(T [[p]]σ) = Proj(V,l)(T [[q]]σ), this yields for the chosen
Nσ

∀m > Nσ : Proj(V,l)(~Tm[[p]]σ) = Proj(V,l)(~Tm[[q]]σ).

If: Now, our assumption is that

∃Nσ ∈ N : ∀m > Nσ : Proj(V,l)(~Tm[[p]]σ) = Proj(V,l)(~Tm[[q]]σ).

We also know that there is an Nσ
p such that ∀m > Nσ

p : T [[p]]σ = ~Tm[[p]]σ and

that there is an Nσ
q such that ∀m > Nσ

q : T [[q]]σ = ~Tm[[q]]σ.

Let N ′σ be the maximum of Nσ, Nσ
p and Nσ

q . It follows that T [[p]]σ = ~TN ′σ [[p]]σ,

T [[q]]σ = ~TN ′σ [[q]]σ, and Proj(V,l)(~TN ′σ [[p]]σ) = Proj(V,l)(~TN ′σ [[q]]σ), from which
it follows that

Proj(V,l)(T [[p]]σ) = Proj(V,l)(T [[q]]σ). �

Thus the new equivalence ~S(V,l) is a natural extension of the old equivalence,

S(V,l). ~S(V,l) however, also applies to programs which do not always terminate
and is hence defined for a much larger class of programs.

4.4 Control and Data Dependence Slicing Algorithms Satisfy Finite Trajec-
tory Backward Slice Equivalence

In this section we prove our main result (Theorem 4.2), that slicing algorithms
which use data and control dependence satisfy the new equivalence.

Consider algorithms where the resulting slice consists of those statements
which can be reached via control and data dependences from the slicing cri-
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terion (V, l). This includes Weiser’s algorithm and the pdg algorithm which
are the most widely used slicing algorithms. In our language defined at the
beginning of this section, control dependence can be defined in terms of the
program structure.

Definition 4.3 (Control dependence) For any if and while statements
in a program p,

if(l : b) q else r ⇒ ∀l′ ∈ L(q) ∪ L(r) : l
control−−−−→
p

l′

while(l : b) q ⇒ ∀l′ ∈ L(q) : l
control−−−−→
p

l′

where L(q) denotes the labels in program q.

Data dependence in our language can be defined using finite syntactic paths.

Definition 4.4 (Finite syntactic paths) For any program p, the set of fi-
nite syntactic paths of p, denoted by P(p), is defined as follows:

P([[l : skip]]) = {l}
P([[l : v := e]]) = {l}

P([[q; r]]) = P(q)⊕ P(r)

P([[if(l : b) q else r]]) = {l} ⊕ (P(q) ∪ P(r))

P([[while(l : b) q]]) = ({l} ⊕ P(q))∗ ⊕ {l}

Here, ⊕ is concatenation and ∗ is Kleene closure. Finite syntactic paths are
similar to trajectories with the important difference that they do not contain
state components and, as such, they do not take the actual value of the pred-
icates into account, thereby allowing any branches to be taken. Therefore for
any possible trajectory there is a corresponding finite syntactic path. We can
now define data dependence.

Definition 4.5 (Data dependence) For any program p data dependence is

defined as follows: l
data−−→
p

l′ if and only if ∃π1lπ2l
′π3 ∈ P(p) with ∅ 6= def(l) ⊆

ref(l′) and for all l′′ ∈ π2, def(l′′) 6= def(l). Each πi may be an empty path,
def(l) is the set of variables defined at l (a set of maximum one element), and
ref(l) denotes the set of variables referenced at l.

Now we are able to define what property the dependence-based slicing algo-
rithms (including Weiser’s one) preserve.

Definition 4.6 (Dependence-based slice) Let q be a quotient of p, then q
is a dependence-based slice of p with respect to (V, l) if and only if

• l survives in q, and
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• if l′ survives in q and either l′′
data−−→
p

l′ or l′′
control−−−−→
p

l′ then l′′ survives in q.

where l is the label of an assignment sub-program and V = def(l).

Note that in the above definition we allow slicing only with respect to the
set of variables defined at the slice point. This is a very natural restriction
and avoids the problem of the slice-point not being in the slice 3 . In the pdg
approach [25] where there is a desire to slice on a criterion (V, l) that does not
satisfy this a new node – an assignment – is added at the point of interest.
This converts the problem of producing the slice for (V, l) into producing the
slice for (V ′, l′) that does satisfy the above constraint.

Our goal is to show that for any program p, if q denotes the dependence-based
slice of p with respect to (V, l) conforming to Definition 4.6 (the slice produced

by Weiser’s and the pdg algorithm) then p ~S(V,l) q.

We generalise Definition 2.3 to a set of labels L by putting

(l′, σ)↓L =

(l, σ↓def(l)) if l ∈ L,
λ otherwise,

where we have taken V = def(l) for each l ∈ L. Similarly, we generalise
Definition 2.4 to give

ProjL(T ) = (l1, σ1)↓L . . . (lk, σk)↓L

for the trajectory T = (l1, σ1)(l2, σ2) . . . (lk, σk).

We now are in a position to prove Lemma 4.3, from which our main result,
Theorem 4.2, follows immediately. Observe that the statement of Lemma 4.3
is stronger than necessary, since we prove the condition for all n ∈ N whereas,
in fact, it would have been sufficient to prove that the condition holds for n
sufficiently large.

Lemma 4.3 Let q be a dependence-based slice of p with respect to (V, l) where
l is an assignment statement and V = def(l), then

∀σ ∈ Σ : ∀m ∈ N : ProjL(~Tm[[q]]σ) = ProjL(~Tm[[p]]σ)

where L is the set of surviving labels of q.

3 Weiser handled this problem by slicing with respect to the ‘nearest successor’ of
the slice point that is in the slice [46].
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Proof. Write

~Tm[[p]]σ = (l1, σ1) . . . (lj, σj)

and ~Tm[[q]]σ = (l′1, σ
′
1) . . . (l

′
k, σ

′
k)

where σ = σ0 = σ′0 so that

ProjL(~Tm[[p]]σ) = (lf(1), σf(1)↓def(lf(1))) . . . (lf(i), σf(i)↓def(lf(i))) (1)

and ProjL(~Tm[[q]]σ) = (l′g(1), σ
′
g(1)↓def(l′g(1))) . . . (l

′
g(h), σ

′
g(h)↓def(l′g(h))) (2)

where f and g are monotonic increasing functions on N and i and h are the
lengths of the projected trajectories.

Suppose that the projected trajectories are not equal, then this is because at
least one of the following is true:

(1) The projected trajectories do not have the same length, i.e., h 6= i.
(2) The projected trajectories have the same length, but the labels do not

correspond, i.e., h = i but ∃t for which lf(t) 6= l′g(t).
(3) The projected trajectories have the same length and the labels corre-

spond, but the states differ at some point, i.e., h = i and ∀t lf(t) = l′g(t),
but ∃t and ∃x ∈ def(lf(t)) for which σf(t)(x) 6= σ′g(t)(x).

Taking the third case first, let t be minimal, i.e., the first position in which the
projected states differ. As def(lf(t)) 6= ∅ this is an assignment and to cause the
disagreement we must have v ∈ ref(lf(t)) with σf(t)−1(v) 6= σ′g(t)−1(v). But the
minimality of t means that the projected trajectories (1) and (2) are equal up
to their t-th elements, therefore to cause the disagreement on v there must be

an assignment to v in p from a statement labelled l′′ /∈ L. Therefore l′′
data−−→
p

lf(t)

which contradicts its absence from q and thus from ProjL(~Tm[[q]]σ).

In the other two cases we again have agreement on some initial segment up
to lf(t) 6= l′g(t) for minimal t. Since the projected trajectories (1) and (2) now
diverge lf(t) must label the entry point of an if or while sub-program and
the boolean expression evaluated in p must differ to that evaluated in q. Thus
as before we must have v ∈ ref(lf(t)) such that σf(t)(v) 6= σ′g(t)(v). However,
arguing as for the third case, the states must also agree up to σf(t) = σ′g(t) and
if v is assigned in p then its label is in L, giving the required contradiction.�

Theorem 4.2 Dependence-based slicing algorithms satisfy the new equiva-
lence. That is, if q is a dependence-based slice of p with respect to (V, l), where

l is an assignment statement and V = def(l), then q ~S(V,l) p.
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Proof. The fact that

∀σ ∈ Σ : ∃Nσ ∈ N : ∀m > Nσ : Proj(V,l)(~Tm[[q]]σ) = Proj(V,l)(~Tm[[p]]σ)

follows immediately from Lemma 4.3.

We have, thus, proved that dependence-based slices satisfy our new equivalence
~S(V,l) for every slicing criterion (V, l). �

5 Comparison with Previous Approaches

In this section, we compare our approach with the other semantics discussed in
Section 2. Unlike the lazy and transfinite approaches [10,19,35], ~T is substitu-
tive. In Section 3.2.2, we highlighted a problem with the transfinite approach:
the semantics is not defined when the program control flow after an infinite
loop depends on values computed by an infinite loop. Our semantics, however,
is well-defined in such situations, since it only considers finite unfoldings. Fi-
nally, we argue that our approach is more intuitive than these approaches
since it is based on standard semantics.

5.1 A Natural Extension of Static Backward Equivalence

The trajectories in Definition 2.6 are finite, hence static backward equivalence
is only defined for programs which terminate. S(V,l) is not an equivalence re-
lation on the set of all programs. It is only an equivalence relation on sets
of programs which all terminate in the same set of initial states. (The set of
programs which always terminate is an example of such a set).

Slicing algorithms however, are applied not just to programs which termi-
nate in all states but also to programs whose termination conditions are not
known. In these cases, we cannot guarantee that static backward equivalence
is preserved. This is a major shortcoming of static backward equivalence.

Theorem 4.1 shows that our new semantic equivalence ~S(V,l), naturally ex-
tends static backward equivalence, S(V,l) to cover both terminating and non-
terminating programs.

5.2 ~T is Substitutive

In this subsection, we prove that ~T is substitutive.
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Definition 5.1 (Substitutivity) A semantics is substitutive if and only if
whenever a sub-program q of a program p is replaced with another semantically
equivalent program, q′, the resulting program p′ is semantically equivalent to
p.

Theorem 5.1 (~T is substitutive) Let p be a program and p′ be the program
obtained from p by replacing a sub-program q by program q′. Then ∀n ∈ N

~Tn[[q]] = ~Tn[[q′]] =⇒ ~Tn[[p]] = ~Tn[[p′]].

Proof. We proceed by structural induction over our language Γ.

• For assignment statements and for skip statements the result is trivial.
• For sequences suppose the result holds for programs p1 and p2. Let p′1 be

the program obtained by replacing a sub-program q1 of p1 by an equivalent
program q′1. Let p′2 be the program obtained by replacing a sub-program q2,
of p2 by an equivalent program q′2. For any σ ∈ Σ and n ∈ N we have

~Tn[[p′1; p
′
2]]σ = ~Tn[[p′1]]σ ⊕ ~Tn[[p′2]]σ

′ (by definition)

= ~Tn[[p1]]σ ⊕ ~Tn[[p2]]σ
′ (by induction)

= ~Tn[[p1; p2]]σ

from which the result follows by induction.
• For if statements let p1, p2, q1, q2, p

′
1, and p′2 be as above. For any σ ∈ Σ

and n ∈ N we have

~Tn[[if(l : b) p′1 else p′2]]σ

= 〈(l, σ)〉 ⊕ (E [[b]]σ → ~Tn[[p′1]]σ, ~Tn[[p′2]]σ) (by definition)

= 〈(l, σ)〉 ⊕ (E [[b]]σ → ~Tn[[p1]]σ, ~Tn[[p2]]σ) (by induction)

= ~Tn[[if(l : b) p1 else p2]]σ

• For while loops suppose that the result holds for a program p and let p′ be
the program obtained by replacing a sub-program, q, of p by an equivalent
program q′. For any σ ∈ Σ and n ∈ N we have

~Tn[[while(l : b) p′]]σ = ~Tn[[Wn(l, b, p′)]]σ

from which the result follows by induction using the result for if sub-
programs and sequences of sub-programs. �

5.3 Finite Trajectory Semantics is More Intuitive

A problem with the lazy and transfinite approaches is that they define a se-
mantics of programs that does not resemble the actual execution of a program
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on a computer. They are conceptual models that requires the reader, for exam-
ple, to imagine programs continuing to execute after executing infinite loops
(and even to imagine the execution of an infinite loop an infinite number
of times). The fact that a slice preserves such a counter-intuitive semantics
means that it is very difficult for the user of a slicing algorithm to envisage
the connection between the original program and its slice. Clearly, for a se-
mantics to be useful as a way understanding this relationship, it is preferable
if it is defined in terms of the normal execution of programs on a computer,
i.e., using standard strict semantics. This is true of finite trajectory backward
slice equivalence, which has a comparatively intuitive definition:

An n-machine is a notional computing engine on which all loops are forced to
terminate after n iterations. Programs p and q are finite trajectory backward
slice equivalent with respect to slicing criterion (V, l) if for all states σ, there
exists a sufficiently large Nσ, such that for all larger n, when run on an n-
machine they will both pass through l the same number of times and the
values of all the variables in V will agree at corresponding times through l.

6 Conclusions and Future Work

Motivated by the need to understand the behaviour of slicing algorithms when
applied to reactive systems, we have introduced a theory for slicing non-
terminating programs. In achieving this, our main contributions have been:

(1) to introduce a new, substitutive, intuitive, finite trajectory-based seman-

tics, ~T , of programs (Section 4.2),

(2) to prove (Theorem 4.1) that its induced equivalence, ~S(V,l), is a natural
extension, to non-terminating programs, of the equivalence, S(V,l), intro-
duced by Weiser [46] that only considers terminating programs and

(3) to prove (Theorem 4.2) that slicing algorithms based on traditional data

and control dependence preserve ~T , thereby showing that the new se-
mantics captures the behaviour of program slicing algorithms for both
terminating and non terminating programs.

In this paper we have considered concrete programs, but it is well-known
that program schemas [11,13,34] – equivalence classes of programs – contain
all the necessary information to formally investigate dependence-based slicing
algorithms. Future work will attempt to generalise the ideas in this paper by
further investigating the relationship between slicing algorithms and schema
theory.

We have focused on static backward slicing, and especially on the extension
of the static backward equivalence relation S(V,l) on terminating programs
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to ~S(V,l) on all programs. Our idea of limiting loops to a specific number of
iterations (or, equivalently, unfolding them a specific number of times) can
be applied to all other forms of slicing formally treated in our previous work
[5,1,3,4]. Most importantly, it can be applied to the unified equivalence defined
by Binkley et. al [5]. We will also investigate the relationship between the
resulting (dynamic) definitions and the existing (dynamic) slicing algorithms.
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