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Abstract. This data-driven computational psychiatry research  proposes a novel 

machine learning approach to developing predictive models for the onset of first-

episode psychosis, based on artificial neural networks. The performance 

capabilities of the predictive models are enhanced and evaluated by a 

methodology consisting of novel model optimisation and testing, which 

integrates a phase of model tuning, a phase of model post-processing with ROC 

optimisation based on maximum accuracy, Youden and top-left methods, and a 

model evaluation with the k-fold cross-testing methodology. We further extended 

our framework by investigating the cannabis use attributes’ predictive power, and 

demonstrating statistically that their presence in the dataset enhances the 

prediction performance of the neural network models. Finally, the model stability 

is explored via simulations with 1000 repetitions of the model building and 

evaluation experiments. The results show that our best Neural Network model’s 

average accuracy of predicting first-episode psychosis, which is evaluated with 

Monte Carlo, is above 80%.  
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1 Introduction 

Policy changes and the legalisation of cannabis across countries, especially the Nether-

lands, Uruguay and some states in the USA, indicate that cannabis is gaining greater 

global acceptance. It has been reported that cannabis has been the most popular illicit 

drug in the world in the last decade, with an estimated 183 million annual users [1]. 

However, studies show that countries with higher cannabis consumption also have 

https://kclpure.kcl.ac.uk/portal/en/organisations/biostatistics--health-informatics(843d218e-8612-4ff3-a5c9-b8b1eac7377f).html
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higher proportions of people seeking treatment for psychotic disorders, including first-

episode psychosis, schizophrenia, anxiety and substance use disorders [2]. This makes 

it imperative to understand the likely consequences of cannabis use, even if these con-

sequences affect only a minority of users. Therefore, the link between cannabis con-

sumption and the risk of experiencing psychotic disorders must be thoroughly 

scrutinised.    

Recent researches have attempted to understand whether specific patterns of canna-

bis use, such as potency or age, are associated with a higher risk of developing psychotic 

disorders. One study concluded that nearly a quarter of all new psychosis patients in 

South London (UK) could be associated with the use of high-potency, skunk-like can-

nabis [3]. Another study [4] estimated that a person who uses cannabis daily for more 

than six months has a 70% likelihood of suffering from psychotic disorders. 

Few studies have used risk prediction modelling or advanced machine learning al-

gorithms to establish a link between cannabis use and first-episode psychosis. In fact, 

apart from our recent work [4], we are not aware of the existence of any such studies. 

Most prior studies have relied solely on explanatory research strategies and been based 

on various conventional statistical techniques, such as hypothesis formulation and ver-

ification via statistical tests, logistic regression modelling, etc. These methods are well-

recognised and widely used in medical research, but they rarely match the high potential 

of machine learning methods. The domain of machine learning has continued to de-

velop for many years, and advanced predictive techniques have been expanded and 

improved constantly. These advanced predictive techniques, in turn, are prompting ex-

tensive usage of computers and artificial intelligence techniques in many domains, such 

as medicine [5] [6]. Artificial neural networks have proven their remarkable ability to 

detect predictive patterns in different types of datasets of various complexities, and of-

ten showed their superiority compared with other machine learning techniques. 

Artificial neural networks are computational models that simulate the way biological 

neural networks process information in the human brain [7]. They are usually composed 

of several highly interconnected groups of artificial neurons that work together to solve 

specific problems. These computational models are typically used to model complex 

relationships between inputs and outputs, such as those in prediction models. Just like 

learning in biological neural networks, artificial neural networks process information 

by ‘tuning’ existing connections among neurons in order to process information. 

While techniques involving support vector machines are still popular within the ma-

chine learning community [4] [8], artificial neural networks are gaining considerable 

attention again. Recently, artificial neural networks have been successfully used in un-

derstanding the heterogeneous manifestations of asthma [9], diagnosing tuberculosis 

[10], classifying leukaemia [11], detecting heart conditions in electrocardiogram (ECG) 

data [12], etc. These studies show that neural networks are capable of handling complex 

medical data, such as ambiguous ECG signal data, and achieving outstanding results 

not yet produced by other methods. 

In this study, we offer a novel machine learning approach that uses neural networks 

to develop predictive models for the onset of first-episode psychosis. The dataset on 

which we based our study was collected by psychiatry practitioners and has been used 

in previously conducted studies, such as [3][4]. It comprises an extensive set of 
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variables, including demographic, drug-related and other variables, with specific 

information on participants' histories of cannabis use, as seen in Table 1.  

 

Table 1. Cannabis use attributes in the analysed dataset [4]. 

 

Attribute Description 

lifetime_cannabis_user Ever used cannabis: yes or no 

age_first_cannabis Age upon the first use of cannabis: 7 to 50 

age_first_cannabis_under15 

 

Age less than 15 when first used cannabis: yes, no or 

never used 

age_first_cannabis_under14 

 

Age less than 14 when first used cannabis: yes, no or 

never used 

current_cannabis_user Current cannabis user: yes or no 

cannabis_fqcy 

 

Pattern of cannabis use: never used, only on weekends 

or daily  

cannabis_measure 

 

 

Cannabis usage measure: none, hash less than once per 

week, hash on weekends, hash daily, skunk less than 

once per week, skunk on weekends, skunk daily 

cannabis_type Cannabis type: never used, hash or skunk 

duration Cannabis use duration: 0 to 41 (months) 

 

Our paper proposes a novel data-driven computational psychiatry and machine 

learning approach to developing predictive models for the onset of first-episode 

psychosis, based on feed-forward artificial neural networks. The performance 

capabilities of the predictive models are enhanced and evaluated by a methodology 

consisting of model optimisation and testing, which integrates a phase of model tuning, 

a phase of model post-processing with ROC optimisation based on maximum accuracy, 

Youden and top-left methods, and a model evaluation with the k-fold cross-testing 

methodology. We further extend our framework by investigating the cannabis use 

attributes’ predictive power, and demonstrating statistically that their presence in the 

dataset enhances the prediction performance of the neural network models. Finally, the 

model stability is explored via simulations with 1000 repetitions of the model building 

and evaluation experiments. The results show that our best models’ accuracies in pre-

dicting first-episode psychosis in intensive Monte Carlo simulation fall between 

75.03% and 85.13%, with an average of about 81%.    

The rest of the paper is organised as follows. Section 2 presents our methodology 

for predicting the first-episode psychosis, based on experimenting with artificial neural 

networks, and our novel methodology for model optimisation and post-processing, and 

evaluation with optimized cut-off point selection on the ROC curve. The section also 

investigates the outcomes of the extensive Monte Carlo simulations in order to study 

the variation of the models’ performance. In Section 3, we build optimised prediction 

models without the cannabis attributes to study if there is a statistically significant 

difference with respect to the performances of the models using the cannabis attributes. 

Finally, the conclusion and the directions for future work are presented in Section 4. 
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2 Building Prediction models 

2.1 Data preparation   

The data we used to build our predictive models were a part of a case-control study 

[3]. The clinical data comprise 1106 records divided into 489 patients, 370 controls and 

247 unlabelled records. The patients were individuals who presented with first-episode 

psychosis to the inpatient units of the South London & Maudsley Mental Health Na-

tional Health Service (NHS) Foundation Trust. The controls were healthy people re-

cruited from the same area served by the Trust. The control samples were similar to the 

patient samples in age, gender, ethnicity, educational qualifications and employment 

status.  

Each record in the data refers to a participant in the study and has 255 possible 

attributes divided into four groups. The first group consists of demographic attributes, 

which represent general features like gender, race and level of education. The second 

group of drug-related attributes contains information on the use of non-cannabis drugs, 

such as tobacco, stimulants and alcohol. The third group contains genetic attributes. 

These were removed from the analysis for the purposes of this study. The final group 

contains cannabis-related attributes, such as the duration of use, initial date of use, fre-

quency, cannabis type, etc. (see Table 1). 

The goal of this stage is to perform a high-level simplification of the dataset and to 

prepare the dataset for use in our novel approach to predict first-episode psychosis. This 

stage involved several steps. First, records that were missing critical data were removed 

from the dataset. This included both records with missing labels and records with miss-

ing values on all cannabis-related variables. Second, certain variables were removed 

from the dataset. This primarily included variables that were deemed to be irrelevant to 

the study (e.g. those related to the individual IDs of the study participants) and variables 

that fell outside the scope of the study (e.g. certain gene-related variables). In addition, 

any numeric predictors with zero or near-zero variance were dropped. Third, we sought 

to standardise the encoding of missing values across the dataset. Prior to this step, 

values including 66, 99 and -99 all represented cases with missing values; thus, we 

replaced all such indicators with a consistent missing value indicator: NA. Fourth, some 

variables were re-labelled to provide more intuitive descriptions of the data they con-

tained. In multiple situations, some variables had similar meanings but also records 

with missing values. Therefore, we conducted an imputation process to effectively com-

bine the information from all the related variables into one. For example, two variables 

described alcohol use, but were inconsistently present and presented missing values 

across the records. These were combined in a way that created one single variable with 

consistent values that were as complete as possible. This process was used to generate 

value-reacher and value-consistent variables related to alcohol use, tobacco use, em-

ployment history and age.  

Finally, any attribute that had more than 50% missing values was removed from the 

study. We then dropped any record for which more than 70% of the remaining attributes 

contained missing values. The resulting dataset, after the transformations above, 

contained 783 records and 78 attributes. The records are divided into 451 patients and 
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332 controls. A summary of some of these fields—specifically, those that relate to can-

nabis use, such as type, the age of first use and duration—can be seen in Table 1. 

2.2 Missing values treatment 

Although the data set was pre-processed and attributes with more than 50% missing 

values were removed, the final dataset still contained several missing values. Of the 

783 records, only 22.8% were complete cases. This volume of missing information 

makes modelling more challenging but is often the reality of medical and social re-

search. 

The predictive power of the data may depend significantly on the way that missing 

values are treated. Some machine learning algorithms, such as decision trees [7], have 

the capability to handle missing data outright. However, most of machine learning al-

gorithms do not have the capability to handle missing data. In many situations, missing 

values are imputed using a supervised learning technique, such as k-Nearest Neighbour 

(KNN. These imputation techniques do not have theoretical formulations but are often 

applied in practice [4][6]. Several imputations techniques, such as the KNN imputation, 

the tree bagging imputation from the caret package [7] and the random forest imputa-

tion from the randomForest package [13] were considered in this work. The last 

method, although it was the most computationally expensive, produced the best results 

regarding the performance of the final predictive models.  

2.3 Training and tuning feed-forward artificial neural networks 

To develop optimised predictive models for first-episode psychosis, we controlled 

the values of the parameters for each of the considered algorithms using chosen grids. 

Predictive models have been fitted in a five-fold cross-validation procedure, on each 

training set after pre-processing techniques were applied on the same training set, and 

have been tested on each test set. Models based on single-layer and multi-hidden-layer 

neural networks were optimised (tuned) to maximise AUC, the area under the ROC 

curve.  

To avoid overfitting, the single-layer neural networks were tuned over 10 values for 

the size (i.e. the number of hidden units) and 10 values for the decay (i.e. the weight 

decay), which is the parameter in the penalisation method for model regularisation. This 

approach is like the penalisation method in ridge regression and is based on the L2 norm 

[7]. The optimal values were 17 and 0.01, respectively. Multi-layer neural networks 

were tuned over 10 values for each of the three hidden layers (i.e. 10 values for the 

number of hidden units in each layer) and over 10 values for the decay. The optimal 

values were 10, 10 and 10 for the three layers and 0.001 for the decay.  

2.4 Treating unbalanced classes  

When there is a priori knowledge of a class imbalance, one direct method to reduce the 

imbalance’s influence on model training is to select training set samples with roughly 
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equal event rates [7]. Treating data imbalances usually leads to better prediction models 

and a better trade-off between sensitivity and specificity.  

In this study, we considered three sampling approaches to sub-sample the training 

data in a manner that mitigated the imbalance problem. The first approach was down-

sampling, in which we sampled (without replacement) the majority class to be the same 

size as the minority class. The second method was up-sampling, in which we sampled 

(with replacement) the minority class to be the same size as the majority class. The last 

approach was the synthetic minority over-sampling technique (SMOTE) [14]. SMOTE 

selects a data point randomly from the minority class, determines the K nearest neigh-

bours to that point and then uses these neighbours to generate new synthetic data points 

using slight alterations. Our analysis used five neighbours. The results show that the 

up-sampling procedure yielded no real improvement in the AUC or the accuracy per-

formances. A simple down-sampling of the data also had no positive effect on the model 

performances. However, SMOTE with neural networks models led to an increase in 

both the AUC and the accuracy.  

As mentioned, data balancing supports a good trade-off between sensitivity and 

specificity. Another method that helps to balance sensitivity and specificity, or a good 

trade-off between the two performances, is model post-processing through the determi-

nation of new cut-off points on the ROC curves [7]. Our framework used three such 

methods, which can be seen as post-processing optimisations of the models. The first 

method found the point on the ROC curve closest to the top-left corner of the ROC plot, 

which represents the perfect model (100% sensitivity and 100% specificity). The sec-

ond method is Youden’s J index [15], which corresponds to the point on the ROC curve 

farthest from the main diagonal of the ROC plot. The third method, which is “maximum 

accuracy” found the cut-off, which is the point with the highest accuracy. 

In order to further improve the model performance, a specially designed post-pro-

cessing procedure and model evaluation were adapted in our modelling procedure. 

First, the dataset is stratified splatted randomly into in 60% training data and 40% eval-

uation data. Then, the training data is used for training and for optimising the model, as 

explained in Subsection 2.3, in a cross-validation fashion, with AUC as optimisation 

criterion, with and without class balancing. Different pre-processing methods such as 

missing values imputation and sampling methods that we have explained above were 

appropriately integrated into the cross-validation. The optimal model obtained on the 

training data was then applied to the evaluation dataset in a specially designed post-

processing procedure, which we call the k-fold cross-testing method.  

In the k-fold cross-testing method, we produce k post-processed model variants of 

the original optimised model. First, we create k stratified folds of the evaluation dataset. 

Then, k-1 folds are used to find an alternative probability cut-off on the ROC curve 

with one of the three specific methods presented above (top-left, Youden, and largest 

accuracy), obtaining a post-processed model variant. The remaining one-fold is scored 

with the post-processed model variant based on the newly found cut-off point. Finally, 

the whole procedure is repeated until all folds are used for scoring at their turn, then the 

predictions are integrated, and the model performance is measured on the whole  eval-

uation dataset. We note here as an essential remark that in each such iteration of the 

procedure, the ROC optimisation data (the k-1 folds) and the scored data (the remaining 
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fold) are always distinct, so the data for model post-processing and the data for scoring 

are always distinct.  

2.5 Increasing model performance via optimized cut-off point selection on the 

ROC curve 

The ROC curve is a graphical technique for evaluating the ability of a prediction model 

to discriminate between two classes, such as patients and controls. ROC curves allow 

visual analyses of the trade-offs between a predictive model’s sensitivity and specificity 

regarding various probability cut-offs. The curve is obtained by measuring the 

sensitivity and specificity of the predictive model at every cutting point and plotting the 

sensitivity against 1-specificity. The left image in Fig. 1 shows the ROC curves ob-

tained for both the single-layer neural networks and the multi-layer neural networks. 

The curve shows that multi-layer neural network performs better regarding the evalua-

tion dataset. 

 

 

 
 

Fig. 1. Left: The ROC curves for 2 of our optimised neural networks (NN) models: 

single-layer NN and multi-layer NN. 

Right: ROC optimisation post-processing of the multi-layer NN model, with 3 optimal 

cutting points: maximum accuracy, Youden and top-left methods. 

 

Numerous methods exist for finding a new cut-off. First, one can find the point on 

the ROC curve that is closest to the perfect model (100% sensitivity and 100% 

specificity), which is the point with shortest distance value from the point (0,1) as 

shown in the left image in Fig. 1. To find the shortest distance, [(1 - sensitivity)2 + (1 - 

specificity)2] was calculated and minimised [16]. Another approach for finding an op-

timal cut-off point on the ROC curve is finding the largest distance from the diagonal 

single-layer NN 

multi-layer NN 

Youden                          

top-left                           

maximum accuracy       
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to the ROC curve as shown in the right image in Fig. 1. This is the point with the largest 

value for the Youden index which is defined as (sensitivity + specificity -1) [15]. These 

are the two most popular methods for establishing the optimal cut-off [17] [7]. We used 

both of these methods, as well as the maximum accuracy approach, which determines 

the point on the ROC curve corresponding to the greatest accuracy (the red point in Fig. 

1, right). In our analysis, the optimal cutting point was derived from independent sets, 

rather than from the training set or the evaluation sets, as shown previously. This is 

particularly important, especially, for small datasets.  

2.6 Monte Carlo and models’ stability 

Due to the uncertainties introduced by the missing values in the data and due to 

expected variations of the predictive models' performance, depending on the datasets 

that were chosen for training and testing, we perform extensive Monte Carlo simula-

tions to study the performances’ variations and the models’ stability. The simulations 

for each NN consisted of 1,000 iterations of the proposed procedure. The models' per-

formances concerning accuracy, sensitivity, specificity and kappa were evaluated for 

each iteration on separate a testing dataset. The aggregation of all iterations yielded 

various distributions of the concerned performance measures. These distributions were 

then visualised using box plots in Fig. 2 to capture the models’ performance capability 

and stability. The subfigures in Fig. 2 were grouped by their performances’ measures 

into four subfigures. Each subfigure contained sex box plots for single-layer and multi-

layer neural networks with several optimized cut-off points on the ROC curve such as 

top-left, Youden index and the maximum accuracy. Also, estimations of the predictive 

neural networks’ performances regarding means and standard deviation (SD) are shown 

in Table 2. The results as shown in Table 2 are regarding the models’ performances 

when applied with the ROC optimisation techniques.  

 

Table 2. Estimations of the predictive neural networks’ performances. 

 

   Model 
Accuracy Kappa Sensitivity Specificity 

mean SD mean SD mean SD mean SD 

Single-layers NN (Youden) 0.76 0.03 0.52 0.05 0.76 0.05 0.75 0.05 

Single-layers NN (top-left) 0.76 0.02 0.52 0.05 0.77 0.04 0.76 0.04 

Single-layers NN (max accuracy) 0.79 0.02 0.56 0.05 0.83 0.04 0.73 0.05 

Multi-layers NN (Youden) 0.8 0.02 0.59 0.05 0.84 0.02 0.75 0.04 

Multi-layers NN (top-left) 0.81 0.02 0.61 0.04 0.84 0.02 0.76 0.03 

Multi-layers NN (max accuracy) 0.80 0.08 0.59 0.13 0.87 0.04 0.74 0.08 

 

On the one hand, single-layer neural networks with ROC optimisations based on 

Youden or top-left scored a mean accuracy of 0.76. The performance of the single-layer neural 

networks slightly improved when a ROC optimisation based on maximum accuracy was 

applied, resulting in a mean accuracy of 0.79 (95% CI [0.75, 0.83]) and a mean sensi-

tivity of 0.83 (95% CI [0.76, 0.9]). On the other hand, the multi-layer neural networks 
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with an ROC optimisation based on top-left cutting point achieved the best results with 

a mean accuracy of 0.81 (95% CI [0.77, 0.86]) and a mean sensitivity of 0.84 (95% CI 

[0.77, 0.88]), comparable to the results achieved by multi-layer neural networks with 

Youden and maximum accuracy.  

This procedure is very computationally costly; therefore, a robust framework was 

essential. Parallel processing was performed on a data analytics cluster of 11 servers 

with Xeon processors and 832GB fast RAM. We used the R software with some pack-

ages, including caret, pROC, e1071, randomForest, ggplot2, plyr, DMwR, AppliedPre-

dictiveModeling and doParallel [18].  

 

 
Fig. 2. 1000 Monte Carlo simulation for artificial neural networks. Where “SY” is single-layer 

NN with Youden cutting point, “ST” is single-layer NN with top-left cutting point, SM” is 

single-layer NN with maximum accuracy cutting point, “MY” is multi-layer NN with Youden 

cutting point, “MT” is multi-layer NN with top-left cutting point, and “MM” is multi-layer NN 

with maximum accuracy cutting point. 

In general, we detect that the proposed models have good predictive power and 

stability, based on an acceptable level of variation in their performance measures 

evaluated across extensive Monte Carlo experiments. However, the results indicate that 

the performance differences between the two types of neural networks with different 

methods for selecting the ROC cutting points are not significant regarding the 4 perfor-

mances.    

3 Cannabis use attributes’ predictive power 

After performing the Monte Carlo simulations, we further investigated the predictive 

models in order to better comprehend the predictive power of the cannabis-related 

attributes over first-episode psychosis. Moreover, we investigated the association be-

tween cannabis-related attributes and first-episode psychosis via statistical tests and at-

tribute-ranking techniques. 
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3.1 Student’s t-test 

In this subsection, we comprehend the predictive power of the cannabis-related attrib-

utes over first-episode psychosis via statistical tests by re-fitting our performing models 

but with the cannabis-related attributes, represented in Table 1, removed from the 

dataset. Then, we compared the performances with and without the cannabis-related 

attributes using Student’s t-test. We thereby demonstrated the predictive value of 

cannabis-related attributes with respect to first-episode psychosis by showing that there 

is a statistically significant difference between the performances of the predictive 

models built with and without the cannabis variables. 

Our analysis also showed that the accuracy decreased by 5% for single-layer neural 

networks and by 6% for the multi-neural networks, if the cannabis-related attributes 

were removed from the process of building the predictive models. Then, we compared 

the accuracies of the single-layer neural networks models built on the data sets with and 

without the cannabis-related attributes using one-tailed t-test. The p-value obtained for 

the t-test was 5.51 ×  10−195.  As for the multi-layer neural networks models built on 

the data sets with and without the cannabis use attributes, the p-value obtained for the 

one-tailed t-test was and  2 ×  10−16. This means that the predictive models with 

cannabis attributes have higher predictive accuracy than the models that were built 

without the cannabis attributes. In other words, the additional cannabis variables jointly 

account for predictive information over first-episode psychosis. These results are con-

sistent with findings from [4].  

3.2 Ranking attributes’ importance with the ROC curve approach 

This subsection proposes the use of the ROC curves to determine the relevant variables 

affecting first-episode psychosis as introduced in [7]. We measure the individual im-

portance of every attributes in the dataset to discover the attributes that yield significant 

improvements in the model predictivity power. To do so, the ROC curve is considered 

on each attribute. Then, a series of cutoffs is applied to the data to predict the class. The 

sensitivity and specificity are calculated for each cutoff, and the ROC curve is com-

puted. Finally, the area under the curve is used as a measure of variable importance. 

Table 3 shows the top 10 attributes ranked by the ROC curve approach.  

Table 3. ROC curve attribute importance 

 
Attribute Importance 

typefreq.1 100.00 

cantype2.1 90.38 

type_use.hash 88.53 

totfreq.1 87.74 

bindur.3 85.84 

education.university.professiolqualifications 85.55 

frequenc.2 84.24 

bullying.no 78.55 

white 72.89 

homeless.1 72.86 
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The results in Table 3 support prior evidence that cannabis attributes, such as the 

type of the cannabis used and the frequency of usage, have significant power in pre-

dicting first-episode psychosis. For example, the results in Table 3 support findings 

from [3] by associating the type of cannabis, especially high-potency cannabis, with the 

onset of psychosis. In addition, bindur.3 in Table 3, which represents the duration of 

cannabis use, is consistent with findings from [4].  

4 Conclusion and future work 

This paper proposes a novel machine learning approach to developing predictive mod-

els for the onset of first-episode psychosis using artificial neural networks. We explored 

two types of artificial neural networks, each of which was able to recognise patterns 

differentiating patients from controls at an acceptable level. We based our approach on 

a novel methodology for optimising and post-processing predictive models. We also 

proposed several sampling methods and several methods for choosing the optimal cut-

ting point on the ROC curve to improve the prediction models’ performances. The mod-

els were then further tested using Monte Carlo experiments, and they consistently 

yielded adequate predictive power and stability.  

The best-performing models were multi-layer neural networks, which achieved ac-

curacies as high as 88% in some cases and an average accuracy of 81% in Monte Carlo 

simulations with 1000 repetitions. The scored performances were above all perfor-

mances achieved in previous studies such as [3].  This paper extends on previous work 

as [3] by proposing a new machine learning framework based on a novel methodology 

in which models are post-processed based on optimized cut-off point selection on the 

ROC curve and evaluated with the recent method of k-fold cross testing which we adapt 

after [8]. Moreover, in this new framework, we developed optimized models with other 

powerful techniques such as artificial neural networks not addressed in [3].  Also, the 

predictive power of cannabis-use attributes was tested via statistical tests and ranking 

methods to demonstrate statistically that their presence in the dataset enhances the pre-

diction performance of the neural network models. The proposed approach proves the 

high potential applicability of machine learning and, particularly, artificial neural net-

works in psychiatry and enables researchers and doctors to predict and evaluate risks 

for first-episode psychosis. 

One possible direction for future work is to further investigate how this prediction 

performance variation evolves by limiting the uncertainty in the data, represented by 

the high proportion of missing values. The second possible work direction is redefining 

the predictive modelling approach by considering more high-dimensionality data, such 

as genotype data. A third future work direction, which we are currently investigating, 

involves enhancing the power to predict first-episode psychosis using deep learning 

approaches. 
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