
Predicting First-Episode Psychosis  

Associated with Cannabis Use  

with Artificial Neural Networks and Deep Learning 

Daniel Stamate1, Wajdi Alghamdi1*, Daniel Stahl2, Ida Pu1,  

Fionn Murtagh3, Danielle Belgrave4, Robin Murray5 and Marta di Forti6 

1 Data Science & Soft Computing Lab, and Department of Computing, Goldsmiths,  

University of London. 
2 Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and 

Neuroscience, King’s College London. 
3 School of Computing and Engineering, University of Huddersfield. 

4 Microsoft Research Cambridge. 
5 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, 

King’s College London. 
6 MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychol-

ogy and Neuroscience, King’s College London. 
* Joint first author, Corresponding author, Email: map01wa@gold.ac.uk 

Abstract. In recent years, a number of researches started to investigate the exist-

ence of links between cannabis use and psychotic disorder. More recently, artifi-

cial neural networks and in particular deep learning have set a revolutionary wave 

in pattern recognition and machine learning. This study proposes a novel machine 

learning approach based on neural network and deep learning algorithms, to 

developing highly accurate predictive models for the onset of first-episode psy-

chosis. Our approach is based also on a novel methodology of optimising and 

post-processing the predictive models in a computationally intensive framework. 

A study of the trade-off between the volume of the data and the extent of uncer-

tainty due to missing values, both of which influencing the predictive perfor-

mance, enhanced this approach.  Furthermore, we extended our approach by pro-

posing and encapsulating a novel post-processing k-fold cross-testing method in 

order to further optimise, and test these models. The results show that the average 

accuracy in predicting first-episode psychosis achieved by our models in inten-

sive Monte Carlo simulation, is about 89%.  

Keywords: First-episode psychosis, Precision medicine, Cannabis use, Predic-

tion modelling, Classification, Neural Network, Deep Learning, Post-pro-

cessing, Monte Carlo simulation, Missing data based uncertainty. 

1 Introduction 

An estimated 183 million people consumed cannabis in 2014 [1] making it the most 

popular illicit drug in the world. Legalising cannabis, especially in countries such as 

the Netherlands and Uruguay, and in some states of USA, and the increasing lobby for 

https://kclpure.kcl.ac.uk/portal/en/organisations/biostatistics--health-informatics(843d218e-8612-4ff3-a5c9-b8b1eac7377f).html
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making cannabis use legal in other countries such as Canada, is an important contrib-

uting factor for the popularity of this drug. On the other hand evidence shows that the 

increase in cannabis consumption is proportionate to the increase in the proportion of 

people seeking treatment for psychotic disorders [1]. While there is some evidence that 

consuming cannabis is a risk factor for several types of psychotic disorders [2], the link 

between these two factors needs to be better quantified.  

These days, researchers attempted to understand whether specific patterns of canna-

bis use such as potency or age are associated with a higher risk of developing psychotic 

disorders. One study concluded that nearly a quarter of all new psychosis patients in 

South London (UK) could be associated with the use of high-potency, skunk-like can-

nabis [3]. Another study [4] estimated that if a person uses cannabis daily for more than 

six months, then there is a 70% likelihood that this person will suffer from psychotic 

disorders. 

There are few such studies based on risk prediction modelling using advanced ma-

chine learning algorithms establishing a link between cannabis use and first-episode 

psychosis – in fact we are not aware of the existence of other studies apart our recent 

work [4]. Most studies so far rely only on explanatory research strategies and are mainly 

based on a number of conventional statistical techniques such as hypotheses formula-

tion and verification via statistical tests, logistic regression modelling, etc. These tech-

niques are well-recognised and used in medical research, but in many situations, they 

do not match the high potential of machine learning methods. The domain of machine 

learning has developed at an enormous speed in recent years, with advanced predictive 

techniques being expanded and improved upon. In particular artificial neural networks 

and especially deep networks, which are state of the art in prediction, have proven their 

abilities in many pattern recognition and machine learning applications. One such field 

of implementation is the domain of medical research [5] [6]. 

On the one hand, artificial neural networks have been successfully used in under-

standing the heterogeneous manifestations of asthma [7], diagnosing tuberculosis [8], 

classifying leukaemia [9], detecting heart conditions in ECG data [10], etc. These stud-

ies show that neural networks have been proven to be capable of dealing with compli-

cated medical data such as the ambiguous nature of the ECG signal data, where neural 

networks show some outstanding results compared to other methods. 

On the other hand, recently, deep networks have attracted widespread attention, 

mainly by defeating alternative machine learning methods such as support vector 

machines in numerous critical applications such as classifying Alzheimer's disease [11], 

classifying AD/MCI patients [12], and improving palliative care [13]. While support 

vector machines are still popular techniques within the machine learning community 

[4] [14], the family of deep learning techniques are gaining considerable attention [15]. 

Deep learning methods are types of representation learning methods, which can auto-

matically identify the optimal representation of raw data without requiring prior feature 

selection. 

In this study, we propose a novel machine learning approach based on neural net-

works and deep learning techniques to develop predictive models for the onset of first-

episode psychosis. The dataset that we based our study upon was collected by psychi-

atry practitioners, and used in previously conducted studies such as [3] [4]. It comprises 
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an extensive set of variables including demographics, drug-related, and several other 

variables with specific information on the participants' history of cannabis use as seen 

in Table 1.  

Our approach features a gradual control of the limitation of the uncertainty present 

in the data due to missing values which are usually inherent in clinical datasets due to 

patients missing appointments, patients not reporting all details, etc. This feature in-

volves considering different thresholds for allowed levels of missingness (per attributes 

and per records) in the data sets, that we call cutting points, in order to examine how 

the prediction models’ performances may vary with these thresholds. Our approach is 

based also on a novel methodology of optimising and post-processing the predictive 

models in a computationally intensive framework. Furthermore, we extended our ap-

proach by proposing and encapsulating a novel post-processing k-fold cross-testing 

method in order to further optimise, and test these models. The results show that the 

accuracy in predicting first-episode psychosis achieved by our best models in intensive 

Monte Carlo simulation, falls between 85.13% and 91.54%, with an average of about 

89%.   

Table 1. Cannabis use attributes among other attributes in the analysed dataset  

Attribute Description 

lifetime_cannabis_user Ever used cannabis: yes or no 

age_first_cannabis Age when first used cannabis: 7 to 50 

age_first_cannabis_under15 

 

Age less than 15 when first used cannabis: yes, no or 

never used 

age_first_cannabis_under14 

 

Age less than 14 when first used cannabis: yes, no or 

never used 

current_cannabis_user Current cannabis user: yes or no 

cannabis_fqcy 

 

Pattern of cannabis use: never used, only at weekends, 

or daily  

cannabis_measure 

 

 

Cannabis usage measure: none, hash less than once per 

week, or hash at weekends, hash daily, skunk less than 

once per week, or skunk at weekends, skunk daily 

cannabis_type Cannabis type: never used, hash, or skunk 

duration Cannabis use duration: 0 to 41 (months) 

2 Methods 

2.1 The clinical data  

The data used to develop our novel approach to predict the first-episode psychosis 

is a part of a case-control study at the inpatient units of the South London and Maudsley 

(SLaM) NHS Foundation Trust in United Kingdom [3]. The clinical data consists of 

1106 records, including 489 patients, 370 controls and 247 unlabelled records. Those 

described as patients were patients of the Trust who at one time presented with first-

episode psychosis; controls were healthy people recruited from the local area. Each 
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record refers to a participant in the study and has 255 possible attributes, which were 

divided into four categories. The first category consists of demographic attributes which 

represent general features such as gender, race, and level of education. Secondly, drug-

related attributes contain information on the use of non-cannabis drugs such as tobacco, 

stimulants and alcohol. The third category is formed of genetic attributes which were 

removed from the analysis for the purpose of this study. The final category contains 

cannabis-related attributes such as the duration of use, initial date of use, frequency, 

cannabis type, etc (see Table 1). 

2.2 Rationalisation and refinement 

The goal of this stage is to perform a high-level simplification of the dataset, and it 

embraces several steps. First, records that were missing critical data were removed from 

the dataset. This included records with missing labels as well as records with missing 

values on all cannabis-related variables. Secondly, certain variables were removed from 

the dataset. This primarily involved variables that were deemed to be irrelevant to the 

study (such as those related to individual IDs of the study participants), and also varia-

bles which were outside the scope of the current study (for example, certain gene-re-

lated variables). In addition, any numeric predictors that had zero or near-zero variance 

were dropped. Thirdly, we sought to make the encoding of missing values consistent 

across the dataset. Prior to this step, values including 66, 99, and -99 all represented 

cases with missing values – so all such indicators were replaced with a consistent miss-

ing value indicator, NA. Fourthly, some variables were re-labelled to provide more in-

tuitive descriptions of the data contained within. Finally, since in multiple situations 

some variables had a similar meaning, yet there were often missing values for some 

records in some of these variables, a process of imputation was used to effectively com-

bine the information from related variables into one. For example, two variables de-

scribed alcohol use but were inconsistently present across the records and presented 

missing values. These were combined in a way that created one single variable with 

consistent and as complete as possible values. Such a process was used to generate 

value-reacher and value-consistent variables related to alcohol use, tobacco use, em-

ployment history, and subjects’ age.  

2.3 A trade-off between the extent of missing values and the dataset size 

A trade-off between the extent of missing values present in the dataset, and the da-

taset size, needed to be investigated from the point of view of the predictive power of 

the models that can be built on the dataset. The intuition is that by using a larger subset 

of the available dataset in the analysis, one would obtain a positive effect on the per-

formance of predictive models (since more data is used to build the models). But this 

larger subset may also encapsulate more uncertainty due to the presence of more miss-

ing values, which usually has a negative effect on the predictive models (even with 

imputation). Therefore, different cutting points, defined as the thresholds for the per-

centage of missing values (or level of missingness) allowed in attributes and records, 

respectively, were considered in order to study the variation of the predictive power of 
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subsets of the dataset. Attributes and records presenting some levels of missingness up 

to the respective cutting points or thresholds, respectively, were kept in the dataset, and 

the remaining ones were removed. The considered cutting points for the records were 

10%, 20%, …, 100%. For instance 30% in this grid means that we keep in the dataset 

only the records that have up to 30% missing values (and 100% means practically that 

all records are kept in the dataset). Moreover, the cutting points for the attributes were 

identified by first determining the percentage of missing values for each attribute, and 

then ordering these percentages and splitting them into twenty equal groups. The ex-

treme values in each group formed the cutting points for the attributes.  

Overall, these cutting points were applied to the dataset and compared with respect 

to the performance of single-layer neural network tuned models, in an attempt to deter-

mine optimal cutting points which were those for which these models had the highest 

accuracy. Once these cutting points were determined, they were applied, and a final 

dataset was thus obtained as the outcome of a trade-off between the extent of missing 

values present in the dataset, and the dataset size. 

How did we exactly proceed to obtain this final dataset? Note that we don’t do a full 

optimisation on all pairs of cutting points for attributes and records to determine this 

final dataset (because training and tuning neural networks is a computationally expen-

sive procedure), but we just apply a heuristic in our framework. Initially we search for 

an optimal value among all the attribute cutting points, and we apply it on the dataset. 

In our case this was 92%. Then, on the resulting dataset, we applied different record 

cutting points following the grid mentioned above, and we determined the best cutting 

point, which was 70% in our case. To compare the cutting points and select the best 

ones, the criterion was the accuracy of the single-layer neural networks which have 

been tuned on the training set (70% of the data), in a 5-fold cross-validation procedure, 

on a 10x10 grid for the number of hidden units, and decay values to prevent overfitting 

with regularisation methods. Random forest imputations of missing values were ap-

plied. The models' performances consisting of accuracy and kappa were estimated on 

the test set (30% of the data).   

 

 
Fig. 1. Model performance for record and attribute cutting points 
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Fig. 1 illustrates the process, in which we observed a decrease in the performance when 

all the attributes were included or when the cannabis attributes were not present in the 

obtained dataset.   

By applying the determined 92% cutting point for the attributes and 70% cutting 

point for the records to the original dataset, we obtained 107 attributes and 628 records 

divided into 360 patients and 268 controls, on which the main phase of predictive mod-

elling with various algorithms was developed, and presented in what follows. We note 

that the proportion of controls and patients in the final dataset are approximately the 

same as in the original dataset, so the current dataset is representative. 

2.4 Imputation 

Missing values’ presence in clinical data is rather common due to reasons explained 

above, and this is the case also of our dataset. The predictive power in the data may 

depend significantly on the way missing values are treated. While some machine learn-

ing algorithms, such as decision trees [16], have the capability to handle missing data 

outright, most machine learning algorithms do not. In many situations missing values 

are imputed using a supervised learning technique such as k-Nearest Neighbour (KNN) 

after suitable scaling to balance the contribution of the numeric attributes. These impu-

tation techniques do not have theoretical formulations but have been much imple-

mented in practice [4][6]. In this work, we considered different imputations such as the 

KNN imputation, the tree bagging imputation from the caret package [16], and the ran-

dom forest imputation from the randomForest package [17]. The last method led to the 

best results in terms of the performance of the predictive models finally built, although 

it was more computationally expensive.  

2.5 Training and optimizing (tuning) predictive models  

For the purpose of developing optimised predictive models for the first-episode psy-

chosis, the values of the parameters for each of the considered algorithms have been 

controlled by chosen grids. Predictive models have been fitted, in a 5-fold cross-vali-

dation procedure, on each training set after pre-processing techniques were applied on 

the same training set, and have been tested on each test set. Models based on neural 

networks with a single-layer, neural networks with multi-hidden-layers, and deep net-

works, were optimized (tuned) based on maximizing AUC, the area under the ROC 

curve.  

The single-layer neural networks were tuned over 10 values of the size (i.e. the num-

ber of hidden units) and 10 values of the decay (i.e. the weight decay), which is the 

parameter in the penalization method for model regularization to avoid overfitting, sim-

ilar to the penalization method in ridge regression, based on the L2 norm [16]. The 

optimal values were 3 and 0.01, respectively.  The neural network with multi-hidden 

layers were tuned over 10 values for each of the 3 hidden layers (i.e. 10 values for the 

number of hidden units in each layer), and 10 values for the decay. The optimal values 

were 5, 5, 5 for the 3 layers, and 0.01 for decay, respectively.   
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As for the deep networks, we employed the H2O’s deep learning, which is based on 

a multi-layer feedforward artificial neural network that is trained with stochastic gradi-

ent descent using back-propagation [20]. The deep networks usually contain a large 

number of hidden layers consisting of neurons with tanh, rectifier, and maxout activa-

tion functions. This type of models has many parameters, but it was designed to reduce 

the number of parameters that the researcher has to specify by applying feature selec-

tion and early stopping techniques. We used deep networks with the method of Gedeon 

[19] to select the best attributes. In our experiments, the early stopping was set to let it 

stop automatically once the area under the curve AUC does not continue improving, in 

particular, when AUC does not improve by at least 1% for 10 consecutive scoring 

events.  

 Also, a grid optimisation was used with the parameters that need to be tuned such as 

the activation function, the number and sizes of the hidden layers, the number of epochs, 

and the 2 parameters corresponding to the L1 and L2 regularisations for preventing 

overfitting.  

The models were tuned over all activation functions, and over 3, 4, …, 25 layers and 

30, 35, …, 50 layers.  The number of units in each layer had the values 50, 100,…, 250.  

Also, we used the values 2, 3, 5, and 10 for tuning the number of epochs. Finally, the 

parameters for the L1 and L2 regularisations were each tuned over the values 10-1, 10-

2 ,…, 10-10.  

After performing the proposed techniques, the optimal values selected for the deep 

learning model are rectifier as an activation function, 5 epochs, and 8 hidden layers of 

200 neurons each. As for the L1 and L2 parameters, the optimal values were 10-4 and 

10-5, respectively.  

2.6 Sampling and post-processing k-fold cross-testing 

When there is a priori knowledge of a class imbalance, one direct method to reduce its 

influence on model training is to select training set samples to have roughly equal event 

rates [16]. Treating data imbalance usually leads to better predictions models and better 

trade-off between sensitivity and specificity.  

In this study, we considered three sampling approaches to subsample the training 

data in a manner that mitigates the imbalance problem. The first approach is down-

sampling in which we sampled (without replacement) the majority class to be the same 

size as the minority class. The second method is up-sampling in which we sampled 

(with replacement) the minority class to be the same size as the majority class. The last 

approach we used is the synthetic minority over-sampling technique (SMOTE) [21]. 

SMOTE selects a data point randomly from the minority class, and the K-nearest neigh-

bours to that point are determined and used to generate new synthetic data points by 

slight alterations to these data points. Five neighbours are used in our analysis. The 

results show that the up-sampling procedure had no real improvement on AUC or the 

accuracy performances. Simple down-sampling of the data also had no positive effect 

on the model performances. However, SMOTE with neural network models has led to 

an increase in AUC and accuracy.  
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Fig. 2. Summary of the implemented methodology, with k-fold cross-testing method 

Fig. 2 gives an overall description of the methodology followed here, based on pre-

processing, model optimisation, and post-processing. The dataset is randomly split, 

with stratification, in 60% and 40% parts denoted here by D1 and D2, respectively. D1 

is used for training and for optimising the model, as explained in Subsection 2.5, in a 

cross-validation fashion, with AUC as optimisation criterion, with and without class 

balancing. Different pre-processing methods such as missing values imputation and 

sampling methods that we have explained above, were appropriately integrated into the 

cross-validation. The optimal model obtained on D1 was then applied to score D2 ac-

counting for the remaining 40% of the dataset. In order to further enhance the model 

performance, a specially designed post-processing procedure that we introduce here, 

was applied with the optimised model using D2 dataset. We call it the k-fold cross-

testing method. In this procedure, we produce k post-processed model variants of the 

original optimised model. First, we create k stratified folds of D2 dataset. Then, k-1 

folds are used to find an alternative probability cut-off on the ROC curve such as the 

cut-off associated with the largest accuracy. The remaining one-fold is scored with the 

post-processed model based on the newly found cut-off point. Finally, the whole pro-

cedure is repeated until all folds are used for scoring at their turn, then the predictions 

are integrated, and the model performance is measured on the whole scored dataset D2. 

We note here as an important remark that in each such iteration of the procedure, the 
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ROC optimisation data (the k-1 folds) and the scored data (the remaining fold) are al-

ways distinct, so the data for model post-processing and the data for scoring are always 

distinct.  

2.7 Monte Carlo simulations 

Due to expected potential variations of the predictive models' performance, depending 

on the datasets for training and testing, but in particular due to the uncertainties 

introduced by the missing values in the data, we conducted extensive Monte Carlo 

simulations to study these variations, and the stability of the models. In particular, the 

simulations for each single-layer neural networks, multi-layers neural networks and 

deep networks consisted of 2,000 iterations of the procedure included in the bold con-

tour box of Figure 2. The models' performances consisting of accuracy, sensitivity, 

specificity, and kappa were evaluated in each iteration. The aggregation of all iterations 

formed various distributions of the above performance measures. These distributions 

were visualised using histograms to capture the performance capability and stability of 

models, as shown in the Results section.  

2.8 Hardware and software 

The Monte Carlo simulations that we conducted as explained above are  
computationally very expensive procedures, therefore a robust framework was re-
quired. Parallel processing was performed on a data analytics cluster of 11 servers with 
Xeon processors and 832GB fast RAM. The R software was used with a number of 
packages, including caret, pROC, e1071, randomForest, ggplot2, plyr, DMwR, Ap-
pliedPredictiveModeling, doParallel and H2O. 

3 Results 

We present here the performances obtained with our approach to predicting first-epi-

sode psychosis, investigated with Monte Carlo simulations, as explained above. We 

should note that, due to lack of space, in this section we only report results regarding 

models which either are not post-processed, or are post-processed with ROC 

optimisation  based on the largest accuracy cut-off methodology.  

Table 2. Estimations of the predictive models’ performances. 

Model Accuracy Kappa Sensitivity Specificity 

Single-layers neural networks 0.80 0.59 0.84 0.74 

Multi-layers neural networks 0.81 0.60 0.85 0.75 

Deep networks 0.89 0.76 0.83 0.93 

 

The results show that the single-layer neural network scored a mean accuracy of 0.80 

(95% CI [0.76, 0.84]) and a mean sensitivity of 0.84 (95% CI [0.76, 0.91]). Also, the 
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multi-layers neural networks achieved a mean accuracy of 0.81 (95% CI [0.77, 0.85]) 

and a mean sensitivity of 0.85 (95% CI [0.77, 0.92]). Figure 3 shows histogram plots 

of the Monte Carlo simulations for single and multi-layer neural networks with post-

processing and performances evaluated with our k-fold cross-testing method. Results 

indicate that the difference between single and multi-layer neural networks is not sig-

nificant regarding the 4 performances.   

 

 

(a) Multi-layers neural networks                 (b) Single layer neural networks 

Fig. 3. 2000 Monte Carlo simulation for neural networks.  

As for deep learning, the results show significantly better performances. Figure 4 illus-

trates histogram plots of the 2000 Monte Carlo simulations for models based on deep 

networks without the post-processing (left) and with post-processing (right). The results 

for the latter show a mean accuracy of 0.89 (95% CI [0.85, 0.92]) and a mean sensitivity 

of 0.83 (95% CI [0.74, 0.92]).  

Overall, we remark a good predictive power and stability of these models, based on 

an acceptable level of variation of their performance measures evaluated across 

extensive Monte Carlo experiments. As mentioned before, a significant proportion of 

this variation may be explained by the uncertainties due to the presence of missing 

values in the dataset.  
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(a) Deep network without post-processing           (b) Deep network with post-processing 

Fig. 4. 2000 Monte Carlo simulation for deep networks.  

4 Conclusion and directions for further work 

The aim of this work has been to propose a novel machine learning approach to 

developing predictive models for the onset of the first-episode psychosis with neural 

networks and deep learning. To our knowledge, previous studies on the link between 

cannabis use and first-episode psychosis investigated this highly important relationship 

via conventional statistical methodologies and techniques and did not tackle the pre-

dictability of this condition in relation to the cannabis use. An exception is [4] which is 

the first study to predict first episode-psychosis using machine learning based on sup-

port vector machines, bagged trees, boosted classification trees, eXtreme gradient 

boosting and random forests. However, the accuracy performances in [4] were slightly 

under 80%, and as such, under all neural and deep network models' performances 

achieved in this work. 

In this paper, we successfully classified first-episode psychosis from normal control 

with 89% accuracy using deep learning. This solution proves the high potential of ap-

plicability of machine learning, in particular deep learning, in Psychiatry, and enables 

researchers and doctors to evaluate the risk for and predict first-episode psychosis.  

Our approach features a gradual control of the limitation of the uncertainty present 

in the data by investigating a trade-off between the extent of missing values entailing 

uncertainty, and the dataset size. Moreover, due to expected potential variations of the 

predictive models' performance due to the uncertainties entailed by the remaining miss-

ing values in the data, we conducted extensive Monte Carlo simulations to study these 

variations, and the stability of the models. 

A potential work direction concerns including genotype data in the study for predic-

tion purposes, and redefining the predictive modelling approach by taking into account 

the particularities of the newly introduced data, such as the high dimensionality. 
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