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1 Introduction

The topic of repeating segments in words is one of major interest in combina-
torics on words. The topic has been studied for more than a century by many
authors after the seminal work of [20] who described infinite words containing
no consecutive occurrences of the same factor.

Beyond the theoretical aspect of questions related to redundancies in words,
repetitions, also called repeats in the following, are often the base for string mod-
elling adapted to compression coding. They play an important role in run-length
compression and in Ziv–Lempel compression, e.g., [5]. Moreover, repetitions re-
ceive considerable attention in connection with the analysis of genetic sequences.
Their occurrences are called tandem repeats, satellites or SRS and should accept
some notion of approximation. The existence of some palindromic repeats is cru-
cial for the prediction of the secondary structure of RNA molecules influencing
their biological functions, see [6].

Repetitions are composed of consecutive occurrences of the same factor. Their
occurrences have been extended to runs, maximal periodic factors, by Iliopoulos
et al. [15] and their number has been shown to be less than the word length n by
Bannai et al. [4, 3] (see also [10]) and even further less than 22n/23 by Fischer
et al. [12].

In this article we consider factors that repeat non consecutively in a given
word of length n. They are of the form uvu where u is their longest border
(factor occurring both at the beginning and end of the word). Their exponent,
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defined as the ratio of their length over their smallest period length, that is,
|uvu|/|uv|, is smaller than 2. The number of occurrences of these factors may
be quadratic with respect to the word length even if they are restricted to non
extensible occurrences. This is why we focus on factors having the maximal
exponent among all factors occurring in a square-free word. They are called
maximal-exponent factors, MEFs in short, and thus have all the same exponent.

The first attempt to count the number of occurrences of MEFs is done in [2].
In there, authors restrict themselves to considering square-free words, and prove
that this number is upper bounded by 2.25n. They also give the example of a
word containing 0.66n such factors. The reason for restricting the question to
only square-free words, words that contain no factor with an exponent at least
2, comes from the question related to the maximum number of runs in a word.
If the word contains squares, the maximal exponent of factors is at least 2 and
MEF occurrences become runs whose largest number is known to be less than
the word length (see [3, 10, 12]).

The concept of α-gapped repeats provides another way to circumvent the
quadratic number of repeat occurrences. They are factors of the form uvu where
|uv| ≤ α|u| for some real α > 1 such that u cannot be extended to the right or
to the left, without breaking the repeat. Note that allowing the two occurrences
of u relates to counting runs and the condition implies that the exponent of α-
gapped repeats is at least 1 + 1/α. After a more restrictive notion of fix-gapped
repeat in [14, 17], locating and counting α-gapped repeats was studied first in
[7], then more deeply in [16] and in [11, 19]. Eventually, algorithms to locate α-
gapped repeats optimally in time O(αn) are described in [9, 13]. The optimality
is based on the tight upper bound O(αn) on their occurrences number.

In this article we improve both the upper and the lower bounds on the number
of MEF occurrences provided in [2, 1]. While the rest of this section contains
preliminaries, the following two sections establish the tools that are to be used.
In Section 4 we upper bound by 1.8n the number of occurrences of maximal
exponent in a length n word, and in Section 5 we give examples of words with
an asymptotic number of MEF occurrences of 5n/6.

Preliminaries. An alphabet is any set, the members of which are called letters.
A word or a string is a sequence of letters drawn from an alphabet. The length
of a string w is denoted by |w|, and represents the number of occurrences of
letters in w. Hence |abaca| = 5. The empty word ε is a string of length 0 that is
considered to be a word over every alphabet.

A word y is a factor (substring) of the word w if the latter can be factorised
as w = xyz for two words x and z. Furthermore, y is a prefix of w if x is empty
and a suffix of w if z is empty. A factor that is a suffix and also a prefix of w is
called a border of w. The mid-position of an occurrence of a factor y whose first
letter is at position i on w is defined by i+ b|y|/2c − 1.

A positive natural number p is a period of y if y[i] = y[i+p] for all i for which
the equation is meaningful. Let us denote by p(y) the smallest period length of

a word y. The exponent of y, denoted by e(y), is defined as |y|
p(y) . The maximal-

exponent factors, MEFs for short, are factors of w whose exponents are maximal
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amongst all exponents of other factors of w. Note that for any two MEFs uvu
and u′v′u′ of the same word, the following properties hold:

|u|
|uv|

=
|u′|
|u′v′|

and
|v|
|u|

=
|v′|
|u′|

.

For the previous example abaca, aba and aca represent MEFs of the word with
u = a and v = b or v = c, respectively, where the exponent of the MEF is 1.5.
In this work, we investigate the number of occurrences of all maximal-exponent
factors in a fixed square-free word w of length n, thus assuming that the minimal
period of every such factor is longer than its border.

2 Partitions of the maximal-exponent factors

We begin this section with a recollection of the results from [1], directly related
to our topic of investigation. Later on, we build on these results and techniques
and give our improved bound.

Lemma 1 ([1]). Consider two occurrences of MEFs with the same border length
b starting at respective i and j positions in the word. Then, |j − i| > b.

Following Lemma 1, counting the occurrences of MEFs by grouping them
with respect to their border lengths, will lead to an initial part of the harmonic
series, a quantity that is not linear with respect to the length of w. Therefore,
in order to obtain a linear upper bound on the number of occurrences of MEFs
the authors introduced in [1] the notion of δ-MEFs, for a positive real number δ,
as follows. A MEF uvu is a δ-MEF if its border length b = |u| = |uvu| − p(uvu)
satisfies 2δ < b ≤ 4δ. Then any MEF is a δ-MEF for some δ ∈ ∆, where ∆ =
{1/4, 1/2, 1, 2, 22, 23, . . .}. This is not a new technique and it has been previously
applied to count runs in words, e.g., [18, 8].

Lemma 2 ([1]). Let uvu and u′v′u′ be occurrences of δ-MEFs in w whose left
borders mid-positions are at respective positions i and j on w. Then, |j− i| ≥ δ.

Exploiting this lemma gives the following upper bound for the number of
occurrences of MEFs.(

b=k∑
b=1

n

b+ 1

)
+

1

k

(
2 +

1

2
+

1

22
+ · · ·

)
n =

(
b=k∑
b=1

n

b+ 1

)
+

4n

k
(1)

The direct consequence of the previous lemma is that if uvu and u′v′u′ are two
δ-MEFs, then u cannot contain u′.

Next, we study in more detail the positioning of an overlap between two
consecutive occurrences of MEFs. We first observe that, for a given word, there
exists a unique rational number q such that for every MEF uvu, |v| = q|u|. In
particular, if the exponent is greater than 1.5, then q < 1 and q ≥ 1 otherwise.
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i j
u v u

u′ v′ u′ v′′ x

Fig. 1. Two MEFs occur at the distance j − i, where j − i+ |u′v′|+ |x| ≤ |uvu|, where
x is a suffix of u and a prefix of u′.

Lemma 3. Consider two MEF occurrences with borders u and u′, starting re-
spectively at positions i and j, where i < j and |u′| < |u| < 2|u′|. Then j−i ≥ |u′|.

Proof. It is straightforward to show that |u| < 2|u′| is a necessary condition.
For example abcdebcfghabcde is a word with maximal-exponent of 1.5 and it also
contains a MEF bcdebc whose border length is 2. However the distance between
the starting positions of these two MEFs is only 1, which is less than 2 = |ab|.

Let us assume that j−i < |u′| and consider a MEF uvu with |v| = q|u| starting
at position i and another MEF u′v′u′ with |v′| = q|u′| starting at position j > i,
where q is a rational number. Furthermore, as a direct consequence of Lemma 2
we know that j − i+ |u′| ≥ |u|.

Denote by x the overlap between u and u′, and let u = yx and u′ = xz for
non-empty words y and z. Since |u| > |u′| thus |y| > |z|, there are two cases to
consider. In the first case, we consider that j − i+ |u′v′|+ |x| > |uvu|, while in
the second case, the contrary.

The first case is not possible because |y|+(q+1)|u′|−(q+2)|u| ≥ q|x|, which
leads to the conclusion that (q + 1)(|u| − |z|) ≤ 0. This is a contradiction since
|u| > |u′| according to the assumption.

The second case is depicted in Figure 1. The factor between the occurrence of
x in the second u′ and that of x in the second u is denoted by zv′′ and its length
must be at least q|x|, because otherwise there will be a factor of greater exponent
than of the current MEF. Thus (q + 1)|u| + |y| − |y| − (q + 1)|u′| − |x| ≥ q|x|.
This leads to j − i = |y| ≥ |xz| = |u′|, which is a contradiction. ut

Now, we investigate the minimum distance between the starting positions of
two MEFs of which the leftmost one has a smaller border.

Lemma 4. Consider two MEFs with borders u and u′, starting respectively at
positions j and i, where i < j and |u′| < |u|. Then j − i ≥ 2|u′| − |u|.

Proof. As depicted in Figure 2, consider a MEF uvu with |v| = q|u| starting at
position j and a MEF u′v′u′ with |v′| = q|u′| starting at position i, where i < j

i j
u v u

u′ v′ u′ v′′ x

Fig. 2. Two MEFs occur at distance j − i, where x is a suffix of u′ and prefix of u. If
j − i is small then the exponent of xv′′x is higher than maximal exponent.
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and q is a rational number. One can simply eliminate other possible ending
positions of these two MEFs, since |u′v′u′| < |uvu| and i < j.

Denote by x the overlap between u and u′, and let u′ = yx and u = xz for
non-empty y and z. Since |u| > |u′| thus |y| < |z|, to avoid having an exponent
greater than that of the MEF, it is necessary that v′′ ≥ q|x|. Hence the following
holds

|x|+ q|u′|+ |u′|+ q|x| ≤ (q + 1)|u|,
|u′|+ |x| ≤ |u|,

and substituting |u′| − (j − i) for |x| leads to our result j − i ≥ 2|u′| − |u|. ut

The following is the result of merging the last two lemmas.

Lemma 5. Let S = [r, .., s] be an interval of integers such that r > 2s
3 and w

be a word. Then within every r + 1 positions of w, there are at most two MEFs
whose border lengths are in S.

Proof. Consider three consecutive MEFs, uvu, u′v′u′ and u′′v′′u′′ starting at
positions i, j and k, respectively, such that |u|, |u′|, |u′′| ∈ S. Following Lemmas 3
and 4, there are four cases to consider, depending on the relations between |u|
and |u′|, and between |u′| and |u′′|. Observe that, at no point can two consecutive
MEFs have identical border lengths because this would contradict Lemma 1.

Assume |u′| < |u|, then following Lemma 3, it must be that j− i ≥ |u′|. Now,
if |u′′| < |u′|, following the same lemma leads to k− j ≥ |u′′|. Adding these gives
k − i ≥ |u′| + |u′′|. Since |u′|, |u′′| ∈ S and 3r > 2s it can be concluded that
k− i > s+ 1. On the other hand, if |u′| < |u′′|, then k− j ≥ 2|u′| − |u|′′. Adding
now to this the quantity j − i, gives the following

k − i ≥ 3|u′| − |u′′| > 2s− s = s, (2)

and the conclusion follows in this case.
Now assume that |u′| > |u|. Then following Lemma 4, j− i ≥ 2|u|− |u′|. The

conclusion for both cases here, derives in a manner similar to Equation 2. ut

Next, following the idea from [1], we introduce the notion of γ-MEFs, for
a positive real number γ: a MEF uvu is a γ-MEF if its border length b = |u|
satisfies 2γ ≤ b < 3γ. Then any MEF is a γ-MEF for some γ ∈ Γ where
Γ = { 12 ,

1
2 · (

3
2 ), 12 · (

3
2 )2, . . .}.

Corollary 6. Let uvu, u′v′u′ and u′′v′′u′′ be three consecutive γ-MEFs starting
at positions i, j and k, respectively, on some word w. Then max{k−i, j−i} > 3γ.

Proof. This is a direct consequence of Lemmas 3, 4, and 5, by considering all of
the possible four cases. ut

We are now ready to improve on the result of Equation 1

Theorem 7. There are less than 4n/b occurrences of MEFs with maximum
length border at least b in a length n word.
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i j j + `+ |v′| j + 2`+ |v|
u v u

u′ v′ u′ v′′ u′

Fig. 3. Two MEFs uvu and u′v′u′ with the left occurrence of u′ entirely contained in
the left occurrence of u. If u is twice longer than u′, then another MEF u′v′′u′ appears.

Proof. We apply Corollary 6 for values of γ ∈ Γb, where Γb = { b2 ,
b
2 ·

3
2 ,

b
2 ( 3

2 )2, . . .}.
This will cover all possible MEFs with border length at least b. Hence, we obtain
the following upper bound:∑

γ∈Γb

2n

3γ
=

4n

3b

∑
i

(
2

3

)i
=

4n

b
(3)

for the number of occurrences of MEFs with border length at least b. ut

As a direct consequence of Theorem 7, one can count the number of MEFs
with border length at least b for any positive b. We choose b = 8 in this paper
because of the way we structured the counting of all MEFs.

Corollary 8. There are less than n/2 occurrences of MEFs with border length
at least 8 in a word of length n.

3 MEFs with double border lengths

In this section, we look at the positioning of overlaps between two MEFs, one
of which has border length twice of the other. First, we make an observation
regarding the case where the border of the smaller MEF is entirely contained
within the border of the bigger MEF.

Lemma 9. If two MEFs uvu and u′v′u′ start at positions i and j, respectively,
for which |u| = 2|u′| = 2` and i ≤ j ≤ i+ `, then the factor starting at position
j + |v′|+ l and ending at j + |v|+ 3l is also a MEF with border length `.

Proof. The situation is depicted in Figure 3. Because |u| = 2|u′| = 2` the fol-
lowing relations hold: |v| = 2|v′| = 2m and |uvu| = 2|u′v′u′|.

It is straightforward to show that u′ is a proper factor of u because i ≤ j ≤
i + `, therefore u′ also occurs in the right occurrence of u. Hence, u′ occurs at
position j+ `+ |v′| and also at j+ 2`+ |v|. Let the factor starting at j+ 2`+ |v′|
and ending at j + 2` + |v| be denoted by v′′, then |v′′| = |v| − |v′| = |v′|. Thus
u′v′′u′ is also a MEF with border length `. ut

The above essentially says that if a MEF has its left border totally included
in the left border of a MEF which is twice as long, then another MEF of the
same size as the former one and the same borders, will have its right border
totally included in the right border of the longer one. This fact, combined with
the fact that within the border of a MEF we cannot have more than two starting
positions of MEFs of half its length, leads us to the following result:
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i

j

k

p

j + `+ |v′|

k + `+ v′

u′′ v′′ u′′

u v u

u′ v′ u′ v′′′ u′

Fig. 4. The MEF with border u is double in length compared to the others, and while
u′ and u′′ start in u, the top and bottom MEFs that are dashed here, start outside u

Lemma 10. If a MEF of border length 2` starts at position i on w, and two
MEFs of border ` start at positions j and k, for i ≤ j, k ≤ i+ 2`, then either:

– there exists a factor of length 3`+ 2 containing the starting position of only
one MEF with border length `, or

– there exist two factors of total length 5`+ 5 containing the starting positions
of at most two MEFs with border lengths `, or

– the first MEF with border length 2` following uvu starts at position i+ 2`+ 3
or after, and there exist two factors of total length 5` + 1 containing the
starting positions of at most two MEFs with border lengths `.

Proof. Let us denote the MEF of border 2` starting at position i by uvu, the MEF
of border length ` starting at position j by u′v′u′, and the MEF of border length `
starting at position k by u′′v′′u′′. Due to the fact that |u| = 2|u′| = 2|u′′| = 2` the
following relations hold: |v| = 2|v′| = 2|v′′| and |uvu| = 2|u′v′u′| = 2|u′′v′′u′′|.
Furthermore, following Lemma 1, assuming that j < k we have i ≤ j < i + `
and j + `+ 1 < k < i+ 2`.

Since i ≤ j < i+ `, following Lemma 9, there is another MEF with border of
length ` at position j + `+ |v′|, which we shall denote by u′v′′′u′.

First, assume that there exists a MEF of border length ` ending somewhere
between positions i−1 and j−2. This is the situation represented at the bottom
of Figure 4 by the thinner/dashed border MEF. However, as a consequence of this
fact, there is no MEF with border length ` ending between positions i−1+`+|v′|
and position j+`+|v′|, as otherwise the symbol on position i−1 will appear again
on position i+ `+ |v| − 1, which leads to a contradiction regarding the maximal
exponent of our word (we have a factor with border au and length 2`+ |v|+ 1,
where a is the respective symbol). Furthermore, having any MEF of border length
` starting anywhere between positions j + `+ |v′|+ 1 and i+ 3`+ |v′| will once
more lead to a contradiction, either following similar arguments regarding the
letter on position i + 2`, or by overlapping with u′v′′′v′. Hence, in this case
we conclude that there is only one MEF with border length ` starting between
positions i− 1 + |v′| and i+ 3`+ |v′|.

Now, assume the contrary where no MEF of border length ` ends between
positions i − 1 and j − 2. Then it is straightforward that between positions
i− `− 1 and k − 1 there exists the starting position of only one MEF of border
length `. Furthermore, if there is a MEF with border length ` starting between
position i + 3` + |v′| and position k + 2` + |v′| + 1, then there cannot be any



8 Badkobeh, Crochemore, Mercaş

MEF with border length 2` starting after uvu, before position k + `, because
otherwise it results in a contradiction regarding the maximality of the exponent.
But then either there exists also only one MEF with border length ` starting
between positions j + |v′| − 1 and k + 2` + |v′| + 1, or the first occurrence of a
MEF with a border of length 2` following uvu starts after position k + `. From
the former (depicted on the top of Figure 4 by the thinner/dashed border MEF)
it immediately follows that there exist two factors of total length

(k − 1− i+ `+ 1) + (k + 2`+ 1− j + 1) ≥ 2k + 3`− 2j + 2 > 5`+ 4,

which contain the starting positions of at most two MEFs with border length `.
The only case left for analysis is when the first occurrence of a MEF with

a border of length 2` following uvu starts after position k + `, and there is a
MEF with border length ` starting at some position p with i + 3` + |v′| ≤ p ≤
k+2`+|v′|+1. However, observe that this, in conjunction with Lemma 9, imposes
the fact that there are no MEFs of border length ` starting between positions
k + 1 and p − |v′| + 1. Hence, we conclude that between position i − ` − 1 and
position i + 3` + 1 there are only two MEFs of border length ` starting. Since
between position j + ` + |v′| + 1 and position i + 3` + |v′| − 1, we do not have
the start position of any MEF with border length `, we conclude that once again
there exist two factors of total length

(4`+ 2) + (i+ 3`− 1− j − `− 1) ≥ 6`+ i− j > 5`+ 1,

that contain the starting positions of at most two MEFs with border length `. ut

The direct outcome of the previous result is as follows. If there are two MEFs
with overlapping left borders such that one has twice the border length of the
other, then the possible total number of occurrences of MEFs will be reduced by
one. This circumstance is further analysed in the following lemma where a more
particular case is investigated.

Lemma 11. Consider two MEFs uvu and u′v′u′ starting at positions i+ 1 and
i, respectively, for which |u| = 2|u′| = 2`. Then, there exists a factor of length
3`+ 2 within which only one MEF of border length ` starts.

Proof. Obviously, we again have |v| = 2|v′| and |uvu| = 2|u′v′u′|.
A first observation is that there is no MEF of border ` starting between

positions i+1 and i+` since otherwise the border of this MEF would overlap or be
right next to u′, which according to Lemma 1, is not possible. Therefore, following
Lemma 9 there is no MEF of border ` starting between positions i+ `+ |v′|+ 1
and i+ 2`+ |v′|.

Since u′v′u′ starts at position i, the first letter of u′, call it a, is also present
at position i + ` + |v′|. Now, if there exists another MEF of border length `
starting anywhere between position i+ |v′| and position i+ `+ |v′|, then it will
follow that at position i + ` + |v| there is a letter a. However, this will lead to
a contradiction regarding the maximal exponent of the word (we have a factor
with border au and length 2` + |v| + 1). This together with the fact that there
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is no MEF with border of length ` starting between positions i+ `+ |v′|+ 1 and
i+ 2`+ |v′| renders the desired result. ut

Now collating the previous results leads to a bound on the number of occur-
rences of MEFs whose border lengths are twice of each other.

Proposition 12. There are at most 2n/(2`+1) MEFs with border lengths ` and
2` in a word of length n.

Proof. According to Lemmas 10 and 11 whenever a MEF with border length `
overlaps but is not fully contained in a MEF with border of length 2`, there exist
two factors whose total length is 2`+ 1 within which no MEF of border ` starts.
Hence, whenever a MEF of border 2` overlaps more than one MEF of border `,
the maximum number of MEFs of border length ` decreases by 1. Furthermore,
in some situations, this can also enforce a reduction in the number of MEFs with
a border length 2`. As a consequence of Lemma 1 there are at most n/(2`+ 1)
MEFs of border length 2`, thus our result follows. ut

Following Proposition 12 there are at most 2n/3 MEFs with border lengths
1 and 2, 2n/5 MEFs with borders 2 and 4, 2n/7 MEFs with borders 3 and 6, and
so on. In addition, the following example shows that these bounds are tight.

Example 13. Consider words u = ab, v = ac and alphabetΣ = {a1, b1, a2, b2, . . .}
for which a, b, c /∈ Σ. Let S1 = ua1vb1 and Si = Si−1uaivbi for i ≥ 2.

ab · ac · ab · ac · ab · ac · ab · ac · ab · ac · ab
 	
� �� �� �
 	

� �� �� �
 	
� �� �� �
 	

� �� �� �
 	
� �

This sequence is a prefix of S∞, where all symbols from Σ have been replaced
by dots, for simplicity. It is not difficult to observe that in every factor of length
3, there is an occurrence of a causing a factor of exponent 4/3. Furthermore,
because there are four letters between every two occurrences of u and every two
occurrences of v, within every factor of length three there is a starting position
of a factor of length 8 whose exponent is 4/3. Since ai 6= aj and bi 6= bj for any
i 6= j, and ai 6= bj for any i, j ≥ 1, we conclude that in fact 4/3 is the maximum
exponent of the sequence S∞. Therefore, every length n prefix of S∞ contains at
most 2n/3 factors of exponent 4/3 and this bound is reached for certain values
of n. ut

Following the same strategy the subsequent lemma refines the number of
maximal-exponents factors whose border lengths are exponentially increasing.

Lemma 14. Every word of length n contains, for any positive integer ` ≤ n
2 , at

most n2

`n+2` MEFs with the border length of the form ` 2i, for any 0 ≤ i ≤ log(n` ).

Proof. As seen from the previous proofs, if there is a MEF with border length
` 2i−1, it cannot overlap more than 2i−2 MEFs of border length ` 2j with j < i−1,
without reducing the total possible number of MEFs. Thus a MEF of border
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length ` 2i will contain a MEF of border length ` 2i−1 and the 2i−2 MEFs of
smaller border length included in it, plus as many as `2i−2 that are not included
in the MEF of border length ` 2i−1 but are fully contained in the one of border
length ` 2i. Since ` 2i ≤ n

2 we have i ≤ log( n2` ). This combined with Lemma 1
completes the proof. ut

By choosing ` = 1, it is immediate from Lemma 14 that the number of MEFs

whose border length have the form 2i is bounded by n2

n+2 . We conclude this
section with a further refinement on the number of MEFs with border lengths
that are small and exponentially increasing.

Lemma 15. Every word of length n contains at most 4n/5 MEFs with the border
length in the set {1, 2, 4}.

Proof. Following Proposition 12 we know that there are at most 2n/5 MEFs of
border lengths 2 and 4. Since we want to maximise the total number of MEFs and
the number of MEFs with border of length 1 is dependent on the number of MEFs
of border of length 2 (that is relative to the overlaps between them according
to the above results), we conclude that we cannot have more than 2n/5 such
MEFs (one inside every MEF with a border of length 2 and another one inside
the MEF with border length 4, not adjacent to the border 2 one corresponding to
it). Hence the total number of MEFs with border length an element of {1, 2, 4}
is bounded by 2

5n+ 2
5n = 4

5n. ut

4 Upper bounds on the number of MEF occurrences

This section makes the final stride towards improving the upper bound on the
number of MEFs. This upper bound is further improved in the case of words
with a maximal exponent greater than 1.5. In addition, an optimal upper bound
is presented for a specific class of words with a maximal exponent of 1.5 and the
length of the MEFs not divisible by their border length.

Lemma 16. There are at most 13n/10 occurrences of MEFs whose border length
is at most 7 in a word of length n.

Proof. According to Lemma 5, MEFs with border length at most 7 can be par-
titioned into three groups: MEFs with border length in S1 = {1, 2, 4} or in
S2 = {3}, or in S3 = {5, 6, 7}. There are at most 4n/5 occurrences of MEFs with
border lengths 1, 2, or 4 according to Lemma 15. There are at most n/4 occur-
rences of MEFs with border length 3 by Lemma 1. Finally, there are at most
n/4 occurrences of MEFs with border lengths 5, 6 or 7 by Lemma 5. Adding all
these together leads to the stated result. ut

The following theorem is a direct consequence of Lemma 16 and Corollary 8.

Theorem 17. There exist at most 1.8n number of occurrences of MEFs in a
word of length n.
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Although the upper bound in Theorem 17 is true in general, this bound can
be further improved when special cases of MEFs are considered. The cases are
distinguished by the value of the maximal exponent.

Remark 18. If the exponent of the MEFs is greater than 1.5, then for every MEF
uvu, |u| > |v|.

This observation implies that no MEF with a border of length 1 exists in this
case. Furthermore, given the fact that for two different lengths MEFs, uvu and
u′v′u′, the following hold

|u|
|uv|

=
|u′|
|u′v′|

and | |u| − |u′| |≥ 2.

The rationale for the latter observation is that the lengths of the borders are
always integers that increase proportionally with the exponent. Hence, the fol-
lowing result is implied:

Lemma 19. There are at most n occurrences of maximal-exponent factors in a
word of length n, whenever the maximal exponent is greater than 1.5.

Proof. First, according to the previous remark, there exists no MEF of border
length 1. Furthermore, the lengths of every two different lengths MEFs, are pro-
portional to some q and differ by at least 2. The counting can be split into two
parts: counting MEFs with border length at most 7 and the remaining MEFs.
For the first case a simple arithmetic argument can show that having MEFs of
border lengths 2, 4 or 6 will maximise the total count of MEFs complying with
these conditions. The following is an upper bound on number of MEF occur-
rences whose border length is at most 7. The calculation of this upper bound
is realised by grouping the MEFs with borders of length {2, 4} and counting
separately those with border length 6.

2n

5
+

n

6 + 1
=

19n

35

It is straightforward that according to Corollary 8 there are at most n/2
occurrences of MEFs whose border length is at least 8, of which at most half
comply with the constraint on the minimum difference between the border length
which is 2. Therefore, there are at most n/4 such occurrences of MEFs. Finally,
connecting these two cases yields the following upper bound:

19n

35
+
n

4
< n

This concludes the proof. ut

The previous result can be further strengthened by also looking at MEFs of
a smaller exponent but having a further restriction. The following result sums
up the result of the above lemma and this particular class of MEFs.



12 Badkobeh, Crochemore, Mercaş

Theorem 20. Every length n word contains at most n occurrences of MEFs
whenever the length of these factors is not a multiple of their longest border.

Proof. Just as for Lemma 19, the condition implies that there exists no MEF
of border 1. Furthermore, once more we make the simple observation that the
difference between the lengths of different length MEFs is at least 2. Thus the
result follows in a manner similar to that in Lemma 19. ut

Observe however that for the case where MEFs have exponent at most 1.5
and their length is a multiple of the border’s length, i.e., if uvu is a MEF, then
there exists a integer q > 0 such that |v| = q|u| and q > 0, the best upper
bound remains that of Theorem 17. Nevertheless, we can assume that for this
class of MEFs, the smallest border has length at most 3, as otherwise, we can
simply drop the first three terms of the left-most sum in Equation 1, which gives
us a result similar to that of Theorem 20, i.e., in this case b = 4 would be the
first value we consider, and thus we would have, again, at most n occurrences of
maximal-exponent factors.

5 Lower bounds on the number of MEF occurrences

Finally, we end this work with an example of a construction that generates a
word that has a ratio of 5/6 of MEF occurrences relative to its length, with the
maximal exponent 10/9. This improves the result presented in [1, Section 6.2].

In the following we consider the fixed alphabet

Σ = {a1, a2, a3, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4, e1, e2, e3, e4},

and the infinite alphabet

Σ∞ = {f1,1, f2,1, . . . , f8,1, f1,2, f2,2, . . .}.

We define the following sequence for i > 0:

u(1,i) = a1 b1 c1 a2 d1 a3 b2 e1 f1,i

u(2,i) = a1 b3 c2 a2 d2 a3 b4 e1 f2,i

u(3,i) = a1 b1 c3 a2 d3 a3 b2 e2 f3,i

u(4,i) = a1 b3 c4 a2 d4 a3 b4 e2 f4,i

u(5,i) = a1 b1 c1 a2 d5 a3 b2 e3 f5,i

u(6,i) = a1 b3 c2 a2 d6 a3 b4 e3 f6,i

u(7,i) = a1 b1 c3 a2 d7 a3 b2 e4 f7,i

u(8,i) = a1 b3 c4 a2 d8 a3 b4 e4 f8,i

and the infinite word Ω =
∏∞
i=1

(∏8
j=1 u(j,i)

)
.

Proposition 21. The ratio between the length of the prefixes of Ω and the num-
ber of occurrences of its maximal-exponent factors they contain tends to 5/6.
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Proof. Since each factor u(j,i) is identified by its last letter fj,i, it follows that
no factor of length greater than 8 repeats in Ω. Hence we focus on short factors.

Let x be a generic factor
∏8
j=1 u(j,i) for some i. From the construction of Ω we

observe that every letter ak, 0 < k < 4, is repeated at every 9 positions leading
to 8 MEF occurrences in Ω and 7 in x. These are the symbols, which occur most
often. Next, every factor of length 2 ending with bk, 0 < k < 5, is repeated at
every 18 positions producing 4 MEF occurrences in Ω and 3 in x. In the same
manner, factors of length 4 with ck, 0 < k < 5, at their third position repeat at
every 36 positions and produce 2 MEF occurrences in Ω and 1 in x each, while
factors of length 8 containing dk, 0 < k < 9, do not repeat in x but produce 1
MEF occurrence in Ω each. Finally, every two consecutive symbols ek, 0 < k < 5,
separated by 9 positions yield a total of 4 MEF occurrences in x.

The above repeats are the only ones producing MEFs since factors of lengths
3, 5, 6 and 7 repeat as factors of lengths 4 or 8 producing a smaller exponent.

Therefore, overall there are 3 × 8 + 4 × 4 + 4 × 2 + 8 × 1 + 4 = 60 MEF
occurrences whose starting positions are on x. If x appears at the end of a prefix
of Ω only 3× 7 + 4× 3 + 4× 1 + 4 = 41 of its positions are starting positions of
MEF occurrences in the prefix.

Eventually, a prefix
∏m
i=1

(∏8
j=1 u(j,i)

)
of Ω has length 72m and contains

60(m − 1) + 41 MEF occurrences. When m tends to infinity, we get an average
of 60/72 = 5/6 MEF occurrences per position as stated. ut

Note that the maximal exponent of factors in Ω is 10/9 and that its con-
struction can be extended to whatever exponent of the form (2`+ 2)/(2`+ 1), in
a similar fashion. It is also our belief that this construction can be generalised
as to generate, for any integer `, an infinite word Ω` in which every MEF has
a border length of the form 2i, i ≤ `, and whose asymptotic number of MEF
occurrences per position grows very closely to 1 with `.

Finally, observe that letters fj,i occurring in Ω can be drawn from an 11-letter
alphabet disjoint from Σ. To do so, it suffices to replace the infinite subsequence
of fj,i by an infinite sequence whose maximal exponent of factors is 11/10, De-
jean’s repetitive threshold of the alphabet. No MEFs considered in the previous
proof will be affected.
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10. M. Crochemore and R. Mercaş. Fewer runs than word length. CoRR,
abs/1412.4646, 2014.

11. M. Dumitran and F. Manea. Longest gapped repeats and palindromes. In 40th
MFCS, volume 9234 of Lecture Notes in Computer Science, pages 205–217, 2015.
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The paper presents new upper and lower bounds for the

number of maximal-exponent factors contained in a word.

The results are significant improvements on the previously

known bounds (obtained by the first two authors of this

paper in some previous publications); as such, the results

are relevant to the community interested in combinatorics

and algorithms on words. The techniques used in this

paper are not surprising, but I think that their usage is

both nice and clever. In conclusion I think that this paper

should be accepted to TCS.

The current presentation of the paper is unfortunately not

so good. Below I attach a (long) list of improvement suggestions.

Introduction:

p.1, line -22: Repeating sequence might be a major research

topic in combinatorics on words. I do not see how they can

be a question. Probably you wanted to say that their study

is "an important question"

Answer: We have rephrased the paragraph, as suggested by the referee.

p.1, line -22: The second sentence starting on this line: who is "it"?

Answer: We have fixed this.

p.1, line -17: what is the difference between repetitions and repeats?

The first sentence of this paragraph does not make much sense.

Answer: We clarified that they represent the same thing.

p.1, line -15: replace "i.e." by "e.g.". "i.e." means "id est"

(that is) while "e.g." means "exempli gratia" (for example

or see for example). I guess you want the second one.

Answer: Done.

p.1, line -15: the part of the paragraph starting with "Moreover.."

until the end of the paragraph. Now I am totally confused: are

repetitions sometimes called repeats? Please rewrite the

beginning of the paper more carefully.

Answer: They mean the same thing. We previously clarified that.
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p.1, line -9: maybe define runs (at least intuitively): maximal

periodic factors. Also, define the notion of border that you

use few lines below.

Answer: Done.

p.1, line -2: replace "according" by "with respect to"

Answer: Done.

p.2, line 3,4: is the first attempt done in two papers?

Answer: We changed this citing only the conference version

of the paper, where this notion was introduced.

p.2, paragraph 2: indeed, if you consider words of length

n that also contain squares, you get n to be an upper

bound on the number of MEFs. How tight is this bound?

Can you produce examples that have a number of MEFs

close to n, even if they have exponent greater than 2?

Answer: Following the model of [2] we focus here only on

factors of a lower exponent. However, the question posed

by the referee might deserve further investigation.

p.2, line 16: fixe-gapped should be fix-gapped. In general

in this paragraph: upper bounding the length of the gap

(by a constant or with respect to the length of the arm of

the repeat) seems to be a good idea towards upper

bounding the number of gapped repeats. See, for instance,

the reference:

Brodal, G.S., Lyngs, R.B., Pedersen, C.N.S., Stoye, J.:

Finding maximal pairs with bounded gap. In: Proc. 10th

Annual Symposium on Combinatorial Pattern Matching.

Volume 1645 of LNCS., Springer (1999) 134-149

Answer: We fixed the notation. The second part of the

referee’s suggestion seems strongly related to the previous

comment. Bounding the gap by a constant would not

guarantee a MEF (according to our definition). However,

bounding it with respect to the length of the arm is

precisely what we did here.

p.2, paragraph about $\alpha$-gapped repeats: say that
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you are talking here about *maximal* repeats (i.e., repeats

whose arms cannot be extended simultaneously); otherwise

the O(\alpha n) bound does not hold.

Answer: Done

p.2, line 18: comma after "Eventually"

Answer: Done

p.2: why not make the preliminaries a standalone section?

Answer: We consider these to be too short as to constitute

a proper section by themselves.

Preliminaries:

p.2, line -3: maybe explain again (as in the end of page 1) who

is u and who is v. It is a good occasion to state that you are only

looking into square free words, so the longest border is shorter

than the period, such a decomposition of a MEF can be defined,

etc. I find it funny that you give an example for the length of a

word but you do not give an example for, e.g., the period or

exponent of a word, which seem notions harder to grasp to me.

Answer: We ended the section with an example. Furthermore,

we added an explanation regarding the relation between the

period and the border for the factors of square-free words.

Section 2:

p.3, line 9: I do not understand the first sentence of this

paragraph. Please rephrase.

Answer: We rephrased the sentence.

p.3: the style in which you cite [1] in the two lemmas is not uniform.

Please use the same way of citing.

Answer: Done

p.3, line -20: replace "i.e." with "e.g.".

Answer: Done

p.3, line -10: generally for every two words u and v there exist a q

such that |v|=q|u|, namely q=|v|/|u|. Remove this superfluous
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remark and rewrite this paragraph.

Answer: We rephrased the sentence in order to express the fact

that for every word such a $q$ is unique.

p.3, line -3: delete semicolon after 1.

Answer: Done

p.4, Lemma 4: I think it is a bit confusing to use now i as the

starting point of u? (so far it was the starting point of u) and j

as the starting point of u (so far it was the starting point of u?).

Answer: We kept $i$ and $j$ as the starting positions of the two

strings in the order they occur (i comes before j, alphabetically).

p.4, line -4: "..greater than *that* of.."

Answer: Done.

p.5, line 2: maybe rewrite 3r>2s as $r>\frac{2s}{3}$.

Answer: Done.

p.5, line 8: I would remove the comma before and

Answer: We prefer to keep the comma as to separate the

two conditions.

p.5, line 14: which is the first inequality?

Answer: We rephrased the sentence.

p.5, line -5: do you really mean enumerate or rather count?

Answer: We only count them.

Section 3:

p.6, proof of Lemma 9: explain briefly why the 2nd u’ cannot

overlap the 3rd u?

Answer: We never claimed such a case is not possible. If $\ell$

is much greater than $m$ than this case is also possible. However,

this does not affect our result.
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p.7, Fig. 4: this figure is very confusing. Why are some words

thinner and do not have names? Maybe you should draw two

figures replacing this one.

Answer: The top and bottom dashed words are the ones that

start outside and are not that important in our argument. Hence we

preferred to thin them as for the reader not to get confused.

p.7, line -15: do you mean only one MEF in general? or only

one MEF with a certain border?

Answer: only one MEF of border length $\ell$. We revised this.

p.8, line 1: comma after "Lemma 9", otherwise the subject and

predicate of that sentence are separated by a comma, which is wrong.

Answer: Done

p.8, line 6: maybe add "and" before "we conclude"

Answer: no "and" is necessary here.

p.8, line 10: I would rewrite the sentence starting with "If there

are two MEFs.." as "If there are two MEFs, with overlapping

left borders, such that one has twice the border length of the other.."

Answer: Done

p.8, line -4: delete "then" from the end of the line.

Answer: Done

p.9, Example 13: the sentence starting with "Furthermore,

because.. , thus.." sounds a bit weird to me. Maybe rephrase.

Answer: removed "thus"

p.9, Example 13: the connection to the counting of MEFs with

certain border lengths should be clarified. I only see how you

count MEFs of certain exponent.

Answer: The exponent in the example is fixed to 4/3. We obviously

count all factors having such an exponent (which is maximal among

all factors of the word - proved in the first part). The counting of

MEFs of different border lengths is also done in the first part, where
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we look at all MEFs with borders 1 and 2.

Section 4:

p.10, line 11: "the final stride towards *proving*". Further, I

think that you should discuss about improving this upper

bound only after you?ve shown it. At this point, improving

an unknown bound know makes no sense to me.

Answer: We have changed our statement. However, note

that an upper bound exists, following [1].

p.10, line -12: writing both "although" and "however" in that

sentence is a bit too much.

Answer: Removed "however"

p.10, Remark 18: sometimes MEFs with |u|>|v| are called long

armed repeats (see the works of Kolpakov and Kucherov)

Answer: No point in introducing such a new notion at this stage.

p.11, line 4: You really use a lot "Furthermore" in this paper.

Maybe use other words instead sometimes.

Answer: We tried to fix this situation.

p.11, line 7: a simple arithmetic what? argument?

Answer: Added argument

p.11, line 10: I would rather say "calculation of this upper bound"

Answer: Done

p.11, line 16: replace "strain" by "constraint"

Answer: Done

p.11, line -18: Remove "However" from the beginning to that phrase.

Answer: Done

p.11, Theorem 20: I find this restriction highly artificial

(compared, e.g., to the restriction in Lemma 19). I am not even

sure that it is worth mentioning in this paper. Same for the
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following paragraph.

Answer: We do not see why such a restriction is artificial.

It basically considers all cases where $|v|>|u|$, but not a

multiple. This therefore leaves only one case to be further

investigated, when $|v|$ is a multiple of $|u|$.

Section 5:

p.12, Prop. 21: I do not really like saying "contain asymptotically".

Maybe say that the ratio between the length of the prefix and its

MEFs tends to 5/6, or something like that (like you say in your proof).

Answer: Changed

p.13, the last two paragraph: I do not understand why you do not

formalise this intuitions or arguments. They seem right and the

current "hand-waving" presentation is not satisfactory.

Answer: Formalising these two paragraphs would imply another

few pages of proofs which would provide only a slight improvement

for the presented lower bound. We consider that these are not as

important.

References:

Ref. [4]: I guess Lyndon should be written with capital L.

Answer: Done

Ref. [20]: "Zeichenreihen" should be written with capital Z.

Substantives are always capitalised in German.

Answer: Done


