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Abstract In this paper, we consider learning by human beings and machines in the
light of Herbert Simon’s pioneering contributions to the theory of Human Problem
Solving. Using board games of perfect information as a paradigm, we explore differ-
ences in human and machine learning in complex strategic environments. In doing so,
we contrast theories of learning in classical game theory with computational game the-
ory proposed by Simon. Among theories that invoke computation, we make a further
distinction between computable and computational or machine learning theories. We
argue that the modern machine learning algorithms, although impressive in terms of
their performance, do not necessarily shed enough light on human learning. Instead,
they seem to take us further away from Simon’s lifelong quest to understand the
mechanics of actual human behaviour.
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1 Introduction

How do human beings make decisions? By his own admission, this question provided
Herbert Simon the impetus to shape his unparalleled research pursuits (Feigenbaum
2001). In the search for answers to various aspects of it, Simon transcended and
redefined conventional disciplinary boundaries by venturing in to multiple subject
areas. To the best of our knowledge, no one scholar in recent times has been as pro-
lific in their contributions across so many areas, a list of which includes economics,
political science, cognitive psychology, artificial intelligence, computer science, phi-
losophy of science, management, organizational theory, complex systems, statistics
and econometrics. Simon’s contributions were not only original but also almost always
challenged the perceived wisdom and orthodoxy that prevailed in each field.

In this paper, we take up a theme that is intimately related to decision making, viz.,
learning, which was also on the radar of Simon’s explorations. Although he returned
to theme now and then, he was relatively more focused on human decision making
(especially in Newell and Simon (1972)). This may be explained by the fact that an
acceptable model of decision making is a prerequisite for a theory of learning. Once
such a model of performance is agreed upon, learning can be seen as an improvement
or augmentation in the capabilities of this performing system in the same (or similar)
problem domain.

Learning, however, is not unique to human beings alone. Other organisms and even
artificial systems are capable of exhibiting learning behaviour. In fact, conceptualizing
thinking and learning machines has been of interest from the genesis of research on
Artificial Intelligence (AI) since Turing (1950). With the recent advances in machine
learning algorithms in a variety of domains, interest in AI has been rekindled. In this
backdrop, we revisit some of the questions that occupied the pioneers of AI, who saw
machines – digital computers in particular – as a vehicle to gain insights into human
cognition, intelligence and learning. More specifically, we ask whether the current
advances in machine learning explain the mechanics of human learning. If not, the
differences between them are of natural interest.1

To study this, we choose board games of perfect information (eg. Chess and Go) as
a paradigm. The reasons behind this choice are partly historical, given their prominent
place in the development of AI over the years because of their amenability to investiga-
tion via computational methods. These games are complex and the impressive ability
displayed by human beings in playing them was seen as providing an ideal ground
for understanding the ingenuity of human intelligence. If one could find satisfactory
answers, it was hoped that relevant invariants about behaviour across domains could
potentially shed light on how people behaved in complex environments, such as the
economy. In addition, modern advances in machine learning algorithms have shown
remarkable performance in games previously thought to pose considerable challenges

1 We do not concern ourselves with all aspects and applications of machine learning, instead focus only
on those models which implicitly or explicitly strive to emulate or explain human cognition and learning.
Therefore, a vast literature on machine learning focussed on developing efficient predictive systems will be
outside the scope of this paper. Similarly, interesting but thorny issues related to consciousness will also be
outside the scope of this paper.
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(Silver et al. 2016). Despite their suitability and performance, there are fundamental
differences between human and machine learning that exist within this paradigm. Our
central argument in this paper is the following: unlike Simon’s approach, the focus and
contents of most contemporary machine learning algorithms render them inadequate
to explain human learning despite their impressive performance.

Our paper is structured as follows: in Sect. 2, we outline different approaches to
learning in classical game theory (another prominent area of research on games) and
contrast it with Simon’s approach. Unlike the former approach, the latter focuses on
procedural rationality exhibited by boundedly rational agents, for whom optimization
in such complex environments is out of reach. Section 3 examines different theories
of learning which specifically emphasise procedural and computational aspects. In
particular, we focus on deep learning employed in AlphaGo, that defeated top players.
In Sect. 4, we outline the essential differences between human and machine learning
and argue that the current machine learning approach takes us further away from
understanding actual human learning.

2 Learning in Games

Our interest here is to explore the aims, methods, relative strengths and limitations of
human and machine learning in the context of games. To this end, it might be useful to
distinguish between learning to play a game and learning to play a game intelligently.2

A mere ability to play a game only requires a knowledge of the rules – allowable or
legal operations – of the game in question. This in itselfmay involve specific skills from
human beings and require detailed instructions in terms of programs for a machine
(digital computer). However, this aspect of learning is relatively straightforward for the
present purpose and can be taught. On the other hand, we will be primarily concerned
with learning to play in the latter sense, where the play is explicitly goal-oriented
and there is an improvement in performance (in terms of some defined criterion) or
capability of the decision-making entity.3

2.1 Learning: A Game-Theoretic View

Learning has been a well-researched subject in different branches of game theory.
We briefly (even if only inadequately) review how learning is conceived within the
conventional game-theoretic literature and behavioural game theory (Camerer 2003).
Learning in situations that called for strategic interaction can be traced as far back as
Cournout’s analysis of duopoly, but research in this area has been revitalized only since
the 1950s. To speak about learning in a meaningful manner, the setting must naturally
be dynamic (at least in principle), where agents can be seen as learning something

2 Here, intelligence is to be broadly understood as the ability to apply knowledge with a certain sophisti-
cation.
3 This is very much along the lines of Newell and Simon (1972, pp.7–8), where learning is viewed as a
second-order effect that transforms or augments the capability of performance of a system.
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over time through experience, trial and error, acquiring new information and so on.4

Hence, much of the discussion on learning in the literature on game-theory concerns
dynamic, repeated games.

There are broadly two classes ofmodels of learning in conventional non-cooperative
game theory. We will call them, for want of better terms, the rational and adaptive
class of models. In the former class, agents are rational, but may not necessarily be in
equilibrium. The learning activity for these agents involves forecasting the behaviour
of their opponents and responding to them optimally. These learning processes can
vary greatly in terms of the sophistication that the agents employ while forecasting
their opponent’s behaviour. Typically, agents possess a prediction rule that maps the
history of the game until a given point to a probability distribution over the future
actions of the opponent. This prediction rule can be deterministic or stochastic, with
perfect or imperfect information, and agents are assumed to respond optimally with
respect to it when choosing their actions at every stage of the game. The broader
question of interest is whether and how these rational agents learn to play equilibrium
strategies of the game starting from out-of-equilibrium situations. Learning in this
context is seen as a dynamic adjustment process of agents groping to equilibrium.
A well researched learning model in this class is belief learning in which agents
dynamically update their beliefs about what their opponent will do based on actions
carried out in previous periods of the game. Models such as best-response dynamics,
fictitious play (Brown 1951) fall under this category. In the case of fictitious play, the
agent tracks the relative frequency with which different strategies are played by their
opponent in the past. This information is then used to formbeliefs or expectations about
strategic choices of the opponent in the current period.5 Agents are typically assumed
to choose a strategywhichmaximizes their expected payoffs in the light of their beliefs
about opponent’s behaviour. In contrast, agents in Bayesian learning models choose
a strategy that is a best-response to a prior, i.e., a probability distribution over the
strategies of the opponent.6 Apart from these relatively unsophisticated models of
learning which focus only on information about the history of the game, we also have
models of sophisticated learning (Kalai and Lehrer 1993) that take in to account the
information available to the opponents, their payoffs and degree of rationality.7

The second class of learning models, viz., adaptive models, do not assume that
the agents optimize and behave rationally as understood in the conventional sense.
Instead, they employ heuristic methods or behavioural rules to choose their actions
at every stage of the game. A simple example of such a behavioural rule is imitation,
which is a basic form of social learning. Another learning rule that has received a lot
of attention in the literature is reinforcement learning (or stimulus response learning),

4 There are cases in which an agent can learn something new in a static setting by, say, purely simulating
the possible moves of the opponent in one’s mind and selecting her response through pure introspection.
But this case may be best viewed as a model of decision making, rather than learning.
5 In case of Cournot best-response, agent believes that her opponent will repeat the action in the previous
period with probability 1.
6 Bayesian learning and a belief learning model with a deterministic prediction rule are mathematically
equivalent.
7 See Nachbar (2009) and Fudenberg and Levine (1998, ch. 8) for a discussion on this topic.
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which has its origins in behavioural psychology (Bush and Mosteller 1951; Roth
and Erev 1995; Erev and Roth 1998). The intuition behind this learning scheme is
that better performing choices are reinforced over time (and hence more likely to
chosen in the future), while those that lead to unfavourable outcomes are not. Other
examples of adaptive learning methods include regret minimization(Hart and Mas-
Colell 2000), imitate the best (Axelrod 1984), learning direction theory (Selten and
Stoecker 1986).8 In addition, there are hybrid learning models, such as experience-
weighted attraction (EWA) model (Camerer and Ho 1999), which combine elements
from belief-learning and reinforcement learningmodels. Note that belief learning pays
no heed to choices made by agents themselves in the past (the focus is only on the
history of the opponent’s strategies and choices). Similarly, in reinforcement learning,
agents ignore the structure of the game, information about strategies used by their
opponents and foregone payoffs. EWA combines this potentially relevant information
taking into account both forces, i.e., attraction and experience weight, in a single
learning model.

The extent to which the above game-theoretic models shed light on how play-
ers might actually play games in reality and learn is a relevant question. Research
on experimental and behavioural game theory (Camerer 2003) explore the empirical
relevance of these models. However much of this research is limited to laboratory
experiments and fitting learning models to experimental data, which poses a restric-
tion.9 In this paper, we are concerned in particular with learning and gaining expertise
in perfect information, complex games like chess and Go. These games typically con-
tain very large search spaces and the possibility of a player optimizing over all possible
strategies is near impossible. We will analyse this in the next section.

2.2 Learning, Chess and Procedural Rationality: A Simonian View

Board games, chess in particular, have always piqued the interest of many scholars
interested in the holy grail of human intelligence and AI. Chess has often been viewed
as the Drosophila of artificial intelligence (Ensmenger 2012) and cognitive science

8 There are other learning methods – many variants of social learning and imitation in particular – that
agents use and are relevant when analysing a population of agents. They can be classified under the umbrella
of evolutionary games, which is outside the scope of this paper.
9 This is especially relevant if one takes the view that players are Information Processing Systems, focusing
on the procedural aspects of decision making and not just on what they decide in a particular situation.
Newell and Simon state their preference towards an empirical (not experimental) approach in Human
Problem Solving explicitly:

There is no lack of orientation towards the data of human behavior in the theory presented in this book.
Yet we employ little experimental design using control groups of the sort so familiar in psychology.
Because of the strong history dependence of the phenomena under study, the focus on the individual,
and the fact thatmuch goes onwithin a single problem solving encounter, experiments of the classical
sort are only rarely useful. Instead, it becomes essential to get enough data about each individual
subject to identify what information he has and how he is processing it. (Newell and Simon 1972,
p. 10)
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(Simon and Schaeffer 1992, p. 2)10. What makes chess (and Go) different from the
games considered in traditional non-cooperative game theory andwhy is it a conducive
and fertile ground to study actual human intelligence?

First, the game of chess may be considered as being trivial or uninteresting from the
classical game-theoretic standpoint.11 Chess is a finite, alternating, two-person, zero-
sum game of perfect information, without any chance moves.12,13 For such games,
a classical game theorist might prescribe a potential rational strategy in which one
goes through every branch of the game tree to see whether it leads to a win, loss or
a draw, assign values to each of those accordingly and employ a minimax strategy
backwards. But, lo and behold, the existence of a strategy does not necessarily imply
that learning such a strategy or implementing it is a trivial task. Second, classical
game theory focuses largely on substantive rationality (the focus is onwhat), focusing
on optimal strategies and consequently, often remains silent on how agents might
choose a particular move. The actual decision processes and their plausibility are not
of central concern. Third, skills such as pattern recognition, knowledge acquisition,
long-term memory and intuition are often vital in the actual game of chess. However,
these factors, or cognitive limitations in general, are seldom seriously considered in
games investigated by classical game theory.

Apart from these differences, a crucial distinguishing factor is that games like
chess have deterministic but very large search spaces. The state-space and size of the
game tree associated are too big and agents cannot realistically engage in exhaustive
search and calculations as they do in conventional game theoretic models. These
considerations qualitatively hold, pari passu, for the game of Go, if anything with
increasing severity given the relatively larger and wider search space. Consequently,
highly selective search may be the only viable option in the light of computational
limitations faced by agents. Yet the skill which human players display in games like
chess and Go is truly astounding. Players who are relatively good often employ highly
selective search and engage in in-depth reasoning of a select few variations.

Not surprisingly, these factors made games – at least chess – an ideal experimen-
tal bed for AI attempting to gain insights into human intelligence. The goal was to
unearth how computationally constrained humans coped with complex and rich task
environments like chess. Decision processes which transformed insights from the
weird and mysterious world of intuition into actual intelligent behaviour were seen
to embody the essence of human thought. Thus, chess presented an ideal microcosm
within which to develop and test theories concerning intelligence and cognition. The
relatively straightforward rules of chess, its discrete nature that was readily amenable

10 McCarthy (1990) attributes the exact phrase to Soviet mathematician Alexander Kronrod. Marsland and
Schaeffer (1990, part V) is one of the early discussions on viewing Go as a new Drosophila for AI.
11 By classical, we refer to von Neumann–Morgenstern variety.
12 Except the initial choice of who plays white, which may be decided by the flip of a coin.
13 Although the game can be infinite in principle, in practise stopping rules (for instance, threefold rep-
etition) are usually in place to make it finite (See FIDE laws of chess, article 9.2). Interestingly, Dutch
grandmaster Max Euwe’s pioneering paper on chess from a constructive – Brouwerian intuitionistic –
standpoint was to show that one of the rules for draws (the German rule) did not rule out the possibility of
an infinite game (Euwe 1929, 2016) [see also Velupillai (2016)].
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to analysis by digital computers together with centuries of accumulated knowledge
together cemented the position of chess as a testing bed for AI. Newell and Simon,
who were among the participants in the seminal AI conference in Dartmouth in 1956,
shortly declared: ‘chess is the intellectual game par excellence.…If one could devise
a successful chess machine, one would seem to have penetrated to the core of human
intellectual endeavor.’ (Newell et al. 1958, p. 320, italics added).

For Simon, human decision makers are constrained by computational limitations
while operating in complex environments. In such environments, Simon argued that
they are best seen as problem solvers (not maximisers or optimizers), who in turn are
characterized as Information Processing Systems (IPS) performing symbolic manip-
ulations (Newell and Simon 1972, pp. 4–13 and ch. 14). They engage in a structured
search in the problem space and only the relevant aspects of the task environment are
represented while structuring. The possibility of optimization or rational play is out
of reach for such players in these complex problems. Unlike those agents in classical
game theory who maximize or optimize, these agents can satisfice at best.14 Accord-
ing to him, ‘The task is not to characterize optimality or substantive rationality, but to
define strategies for finding goodmoves – procedural rationality’ (Simon andSchaeffer
1992). All of these render Simon’s research program a completely different character
from that of von Neumann–Morgenstern approach.

In chess,the practical amount of computation feasible for players and the inability
to exhaustively search the entire search space creates a wedge between the best moves
in the shorter and longer horizons. The task of choosing a‘best move’ to respond
to a given problem on the board involving a smaller search space may differ from
strategy or choices which might be better when the entire course of the game, i.e.,
when larger search spaces (or horizons) are considered.15 This is because the actual
search space under consideration by the problem solver varies over different stages
of the game. The oft-discussed distinction between well-structured and ill-structured
problems can be understood in terms of this wedge. According to this view, the actual
problems presented to agents are best seen as ill-structured problems that are continu-
ally transformed into well-structured problems. These transformations in structuring
the problem representation and using relevant heuristics for a particular representation
are at the core of problem solving (Simon 1973, p. 185–187). It is here that the notion
of learning in Simon becomes evident:

14 Incidentally, Herbert Simon’s centennial year also coincides with the 60th anniversary of the first appear-
ance of the term satisficing (Simon 1956) in the published literature.
15 Smale (1976, p. 288) makes an important observation in this context:

I like to make an analogy between “Theory of Value” and the game theoretic approach to chess. The
possible strategies are laid out to each player in advance, paths in a game tree, or a set of moves, one
move to each position that could possibly occur. Each player makes a single choice of strategy. The
strategies are compared and the game is over. Of course, chess isn’t played like this. …

In fact even the very best chess players don’t analyze very many moves and certainly don’t make
future commitments. Their experience together with the environment at the moment (the position),
some rules of thumb and some other considerations lead to decisions on the playing board.

123



Y.-F. Kao, R. Venkatachalam

If the continuing alteration of the problem representation is short-term and
reversible, we generally call it “adaptation” or “feedback”, if the alteration is
more or less permanent (e.g., revising the “laws of nature”), we refer to it as
“learning”. Thus the robot modifies its problem representation temporarily by
attending in turn to selected features of the environment; it modifies it more
permanently by changing its conceptions of the structure of the external envi-
ronment or the laws that govern it.

Borrowing fromMiller, Simon postulated that learning involves an increasing com-
plexity of informative cognitive representations, or chunks in the long-term memory.
Since short-term memory is rather limited, the number of chunks that agents can han-
dle at any given point in time cannot be more than a handful (seven plus or minus two
according to Miller). A learned or an expert player is seen as employing processes
that recall only a few, but increasingly complex chunks (or groups) from her long
term memory. In addition to this, Newell and Simon also distinguish between adap-
tive changes in heuristics in the short and long-run. For them, learning is a change in
the repertoire of heuristics itself and not just a change in specific heuristics that are
actively guiding a search. Thus, learning from a Simonian standpoint can be seen as
a mixture of (i) increasing nuance in structuring problems, (ii) the ability to group
relevant information or knowledge into chunks in the long-term memory and (iii)
reshaping the repertoire of heuristics that can be employed to chose a good move for
the problem at hand (Simon 1979, p. 167). When Simon speaks about learning, note
however that there is no reference to equilibrium of any sort or a presumed movement
towards it.

It is quite evident that the approaches of classical game theory and Simon are
drastically different. Taking the route of classical game theory, one would consider a
simplified approximation of the actual game, and focus on a game-theoretic optimum
for that approximation. Simon’s route was to depart more ‘from exhaustive minimax
search in the approximation and use a variety of pattern-recognition and selective
search strategies to seek satisfactory moves’(Simon and Schaeffer 1992, p.16). The
second approach to game theory is inherently computational (procedural) and inti-
mately related to the idea of bounded rationality and satisficing.

What is emerging, therefore, from research on games like chess, is a compu-
tational theory of games: a theory of what it is reasonable to do when it is
impossible to determine what is best - a theory of bounded rationality. - (Simon
and Schaeffer 1992, p.16)

Before we end this section, two remarks are in order: first, as Simon has clarified in
various places, he concerned himself with procedures that agents use to solves prob-
lems at hand. In this goal-oriented problem-solving set up, agents who are boundedly
rational should not be viewed against the benchmark of substantive rationality or util-
ity maximization in economics. Bounded rationality is, in fact, a more general notion
and a procedural theory that can sufficiently account for bounded rational behaviour
can naturally accommodate substantive rationality, but not vice-versa.16 They are best

16 See (Velupillai 2012, ch.12. sec. 3) and Kao and Velupillai (2015) for more detailed arguments.
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viewed as different approaches altogether. Second, considering the computational lim-
itations of the decision maker alone does not make the approach Simonian since it is
insufficient to understanding the nature and emergence of procedural rationality. For
Simon, the complexity of the task environment and the practical limitations on the
computational capabilities of the agent are equally important.17

3 Computation and Models of Learning

In the previous section, we noted that Simon’s approach was explicitly computational
and his focus was on procedural rationality. What exactly is a procedure or method
that agents can use for solving problems or learning? Efforts to characterize the idea of
intuitive calculability in terms of a formal notion gave rise to several definitions of an
effective method in the early 1930s, which were later proved to be equivalent. Intuitive
or effective calculability was seen to be encapsulated by the mathematical notion of
computability. Turing’s formulation of this notion, in what came to be known as a
Turing machine, presents one of the simplest yet powerful models of computation.
The Church-Turing thesis (not a theorem) claims that the class of functions that are
intuitively computable is same as the class of functions that are recursive or Turing
computable. For a decision maker to be procedural in this framework, one needs char-
acterize an agent with a model of computation (for instance, a Turing machine).18 The
process of decisionmaking is then one of solving problems algorithmically (Velupillai
2012).19

Before we discuss computable learning in games, brief remarks on computabil-
ity in games is apposite. The first step in a computable approach to studying games
would require that game theoretic models be cast in appropriate recursion-theoretic or
constructive formalisms.20 Classical game theory is replete with games whose deci-
sion rules and strategies are non-effective and non-constructive. Making these games
conducive to analyse procedural and computational aspects would mean effectivis-
ing these games: i.e., identifying and replacing the source of non-effectivities and

17 In this regard, studies that capture computational limitations of agents by viewing agents as finite
automata (Papadimitriou and Yannakakis 1994) or those that include computational costs (more precisely
the complexity or the number of states of finite automata that agents employ to execute their strategy) in
the utility of agents (Rubinstein 1986) fall short of being truly Simonian. The same holds for the approach
in Halpern and Pass (2015).
18 However, one can equally view agents as constructive mathematicians, as Brouwer would, in which case
the notion of an effective procedure or algorithm is not bound by the Church-Turing thesis.
19 Richard Thaler, in his account of the making of (modern) behavioural economics (Thaler 2015, p. 160–
162) refers to the famous Chicago conference in October 1985. While impressed with Kenneth Arrow’s
talk on rationality, Thaler (and other behavioural economists) seemed to have missed the path that Arrow
pointed out in the last few lines of the paper that arose out of that talk:

The next step in analysis, I would conjecture, is a more consistent assumption of computability in
the formulation of economic hypotheses. This is likely to have its own difficulties because, of course,
not everything is computable, and there will be in this sense an inherently unpredictable element in
rational behavior. Some will be glad of such a conclusion. (Arrow 1986, s398, italics added)

20 It is worth noting that computability and constructivity considerations are not one and the same.
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couching them in recursion-theoretic formalisms or endowing them with constructive
processes. Only after this is done, we can pose questions such as whether a given
game is (effectively) playable; if so, whether a best or an optimal strategy, if it exists,
can be actually employed by the player.( Even within classical game theory, there
are results concerning the (un)computability and computational complexity of Nash
equilibria (Prasad 1997; Daskalakis et al. 2009; Velupillai 2009; Nachbar and Zame
1996). However, discussing complexity considerations concerning the computation of
Nash or other types of equilibria make little sense when discussed in the context of
models which are themselves uncomputable.21

A notable contribution in effective games has been by Rabin (1957). A fertile
interpretation of effective games in terms of a more general class of arithmetic games
is presented in (Velupillai 2000, ch.7). Rabin’s theorem is particularly relevant to the
discussion in the subsequent sections concerning learning. Intuitively, it asserts that
there exist finite, determined, perfect information games ‘in which the player who in
theory can always win cannot do so in practise because it is impossible to supply him
with effective instructions regarding how he should play in order to win’ (Rabin 1957,
p. 148).

In this backdrop, we will consider twomajor approaches to learning that are viewed
as being computational and outline the differences between these two.

3.1 Computable Learning

First, we consider a class of models related to the learning paradigm proposed by Gold
(1967) and further developed in Osherson et al. (1986). This was primarily intended as
a model for understanding language acquisition by children. The necessary elements
for describing this learning paradigm include a learner, hypotheses, the environment in
which learning takes place and finally that which needs to be learned: a language. All
of these necessary ingredients are formalized in terms of natural numbers: languages
are seen as a set of natural numbers(N ), more specifically to recursively enumerable
subsets of N . Hypotheses or learner’s conjectures are identified with Turing machines,
environmentswith texts,which are sequenceof natural numbers. Learners in thismodel
are viewed as functions which convert the finite evidence available into theories. Both
evidences and theories are interpreted in terms of natural numbers, and hence the
mapping is from N → N . In this framework, learning is interpreted as being successful
if the learner’s hypotheses stabilize and become accurate. More precisely, successful
learning means identification in the limit – conjectures are made and refuted until they
converge.

The learning function, in general, can be recursive or non-recursive, thus not merely
restricted to a set of partial and total recursive functions. If such a restriction were to be
placed in the context of human learning, then it can be related to a (rather strong) posi-
tion that identifies all human thought and intellectual activities as being simulable by
a Turing machine. However, imposing computability constraints in learning functions
can help identify boundaries and limits of algorithmic reasoning. In this paradigm,

21 For example,models inwhich there are a uncountable infinity of strategieswhere preferences are defined.
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learning can viewed as an act of inductive inference where a learner infers theories
from the finite evidence that is available. This can also be interpreted in terms of the
modern theory of inductive inference proposed by Ray Solomonoff (Velupillai 2000,
ch: 5.2), which is grounded in recursion theoretic ideas. In the context of this paper,
this could be viewed as a game played against nature where agents are provided with
sequences of information at different stages as the play evolves. Although appealing
at a theoretical level, one potential drawback of this paradigm could be that it may
only have limited applicability to study empirical data arising from actual games since
it lacks explicit efficiency bounds. In principle, this convergence can take an infinite
amount of time.22

3.2 Computational (Statistical) Theories of Learning

The second class of learning models that we will discuss are collectively referred to
as computational learning theories or statistical learning theories. These are also often
referred to as machine learning models. Most of these models focus on learning from
actual data and are geared towards making predictions or classifications. Typically,
the task is to find the underlying functional relationships that characterize the data. To
see this in a bit more detail, let X be the input data set and Y be some output measure.
In the case of supervised learning, the task is to infer or approximate the functional
relationship between the input-output pairs (X,Y ) based on the features in X with an
eye on predicting or classifying new data based on this approximation. The learning
agent (or a digital computer) is rendered with abilities to learn from data without
explicit or detailed programming. The act of learning involves the formulation and
alteration of this prediction model, call it f , by minimizing the error. In the case of
unsupervised learning, the task is to uncover hidden structures within a given dataset
X , without a training sample to rely on.

Examples of supervised learning methods include Gaussian kernels, linear and
logistic regression, linear discriminant analysis, separating hyperplanes, Bayesian
methods, classification trees and regression trees among others. Examples of unsu-
pervised learning methods include various clustering algorithms such as k-means,
hierarchical clustering, to name a few. An important learning model that features in
both supervised and unsupervised categories is artificial neural networks.23 There are
also ensemble learning methods which use a collection of learning methods to infer
the predictive model in question. Another model of computational learning that is
widely employed is reinforcement learning (discussed earlier), which has been found
to be extremely useful in devising machines which play games.

Having discussed two major approaches to learning that involve computation, what
distinguishes computable and computational models of learning? First, computable
learning models resort to the formalisms of computability theory and are endowed

22 See Spear (1989) for an application of this paradigm in the context of learning rational expectations
equilibria.
23 The origins go back to the pioneering paper by McCulloch and Pitts (1943) and to the Hayek–Hebb
theories on synaptic plasticity.
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with a recursive structure. In contrast, computational or machine learning models
are computational in a more narrow, instrumental sense: they rely on algorithmic or
computational methods for approximations of their predictive models. Second, one
needs to note the assumptions concerning the domains of input and output data. Those
in latter models are not natural or rational numbers as in the case of computable
learning models, they are almost always real numbers. Thus, computational learning
models are closer to statistical learning theory, where statistical issues concerning
estimation and prediction dominate.

We now return to the employment of these models to learn and play actual complex
games in an intelligent fashion. Computers – especially digital computers – playing
games has been viewed as a possible window to understanding intelligence from their
invention. Alan Turing, the pioneer of computability theory, was one of the early
advocates of this idea. His attempts to understanding machine intelligence utilized the
idea of a chess-playing digital computer (Turing 1948, 1953). Turing also went on
to construct one of the first ever chess playing programs.24 Other early chess playing
programs such as the Los Alamos program, Bernstein’s program and Newell-Shaw-
Simonprogramoffered some thrust during the firstwave ofAI. In particular, Shannon’s
typology of solutions to prune large search trees – through either brute force (Type-A)
or through intelligent heuristics performing selective search (Type-B) – set out two
distinct approaches to constructing chess playing programs.

Simon’s viewwas that both for humans andmachines, reliance on intelligent heuris-
tics for highly selective search was important. Simon and Newell’s approach focused
on symbolic representations of the problem and on information and manipulations of
these strings of symbols. It is now broadly referred to as Classical AI, symbolic-AI or
the Good Old-Fashioned Artificial Intelligence (GOFAI). This ought be distinguished
from sub-symbolic AI, which eschews explicit representation. For sub-symbolic
AI, performance alone matters and the computational learning algorithms were not
expected to reason like humans do.25 Artificial neural nets, reinforcement learning and
other statistical learning approaches outlined earlier belong to this category. One of the
limitations of Gold’s learning paradigm which has been pointed out is that, despite its
elegance, it lacks practical applicability as a theory. On the other hand, computational
models of learning are often applied to a variety of tasks and have been shown to be
fairly efficient. One such example of the statistical approach to learning in machines
isDeep Learning and it has had remarkable success in playing complex games, which
is the subject of the following section.

24 Interest in mechanical (as opposed to digital) chess, of course, goes back a long way in history. Most
efforts to build mechanical or analogue chess playing machines achieved rudimentary and not really suc-
cessful results. Some, as in the case of Wolfgang von Kempelen’s infamousMechanical Turk, were purely
bogus.
25 Those who subscribe to connectionist view would argue that human-like thinking may not be at the
symbolic level and instead believe that information is stored in networks in terms of connections and their
strengths. This debate about what constitutes the correct representation yet to be settled.
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3.3 Deep Learning and Go

Until recently, the game of Gowas regarded as one of the few unconquered frontiers of
AI. The features that made it one of the most challenging games for machine play is its
enormous search space –which ismuch larger than chess – and the notoriously difficult
issues concerning positional evaluation on the board. Go is shown to be PSPACE-Hard
(Lichtenstein and Sipser 1980) and that no PSPACE algorithm can exist (Robson 1983)
for Go.26 Brute-force approaches like those that were relatively successful in chess
(in the case of Deep Blue) are believed to be infeasible when it comes to Go. Just
like with chess, Go piqued the curiosity of cognitive science and AI researchers with
the clear superiority that human beings displayed.27 However, there has been notable
progress in computational learning algorithms employing artificial neural networks to
play Go in the recent times. AlphaGo, developed by Google DeepMind has recently
managed to defeat some of the top Go players in the world. The key idea underlying
this success is deep learning, which in turn is a representational learning method.
Unlike traditional machine learning, the representations are themselves expressed in
a hierarchy of simpler representations (Goodfellow et al. 2016, pp. 5–10) and these
different layers of features and mapping from features to output are to be learned from
data.

A sketch of the strategy and architecture of AlphaGo in a bit more detail may be
useful here. Let us consider a board game like chess and let b and d be the breadth
and depth of game. Then there is approximately bd sequence of moves possible. Since
this number, i.e., bd , for the game of Go is a very large and an exhaustive search
is practically impossible even for very powerful machines. Type-B strategies, which
were outlined Shannon’s initial proposal (to constructing chess programs) to reduce
the effective search space become important and indispensable. The main innovation
in AlphaGo is the way in which this depth and breadth reduction is achieved using
convolutional neural networks and the use of Monte Carlo Tree Search (Silver et al.
2016). Go, in this setting, is viewed as an alternating Markov game between two
players. The probability distribution over possible legal actions at any given state
is referred to as policy. Value function of the game refers to the expected outcome,
provided that the actions by both are selected in accordance with the policy.28 It
employs a value network for evaluating different positions and the moves are then
selected using a policy network.

In terms of the process, first, real life expert Go games (160,000 games, consisting
of 29.4 million moves) are fed as input to train the policy network, which is a con-

26 The problem posed in Robson (1983) is “given an arbitrary Go position on an n×n board, determine the
winner”. That is, deciding whether Black orWhite has winning strategy at an arbitrary position is practically
infeasible.
27 For a more elaborate discussion on Go, especially from the Classical AI standpoint, see (Kao 2013, ch.
5).
28 Existence of unique, optimal value function for such zero-sum games have been used to argue that
minimax type strategies can be employed in principle and the outcome can be determined if both players
follow perfect play (Silver et al. 2016). The problems with performance are seen to be solely emerging
from the act of approximating value functions. The theorem in Rabin (1957) is worth remembering in this
context.
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volutional neural network. The output of this supervised learning process, which is a
probability distribution over legal actions, is then fed as initial input into another policy
network which employs reinforcement learning for improvement. This reinforcement
learning policy network undertakes self-play and generates a new policy, which is an
improved probability distribution over legal moves. Using this policy as an input, the
value networks predict the expected outcome of the game (a single scalar value) using
regression from a given position on the board. The actions then are selected based on
a search algorithm (MCTS) that combines both policy and value networks.29 Similar
deep learning approaches have also had considerable success in games like chess and
Atari (Lai 2015; Mnih et al. 2015).

Even within the computational modes of learning and playing games that we have
discussed, two distinct conceptual approaches to learning can be categorized. First,
learning as understood in machine learning models, involving an alteration of the
internal configurations, prediction models and associated parameters without much
interference or explicit instructions. Performance alone matters in this approach. Sec-
ond, along the lines advocated by Simon, learning involves a permanent alteration in
the repertoire of heuristics to guide search and actions of an IPS, involving knowledge
acquisition and increasing complexity of perceptual chunks. This involves explicit pro-
gramming of the rules and pays attention to both performance and the correspondence
of processes to those implemented by an actual human player.

4 Human and Machine Learning: Lessons from Chess and Go

Deep Blue plays very good chess–so what? Does that tell you something about
how we play chess? No. Does it tell you about how Kasparov envisions, under-
stands a chessboard? …I don’t want to be involved in passing off some fancy
program’s behavior for intelligence when I know that it has nothing to do with
intelligence. And I don’t know why more people aren’t that way. (Somers 2013)

Given the success of various deep learning algorithms, one naturally wonders
whether we are finally closer to understanding how human cognition and learning
works. However, despite the impressive performance by machine learning methods in
games like Go and chess, they do not seem to shed enough light on how human beings
decide and learn in real life.

First, note that the features that are well known to characterise humans – limita-
tions on information processing capabilities, attention, short-term memory – and their
learning processes are not shared by these programs. This omission of psychological
characteristics poses difficulties in inferring corresponding human learning mecha-
nisms based on performance alone.

Second, human-like or even superhuman performance of these machine learning
programs should not be confused with them being ‘explanations’ of actual human
learning. While their achievement may be impressive, they provide little or no expla-

29 For a more detailed description of the methods, see Silver et al. (2016).
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nation regarding howhumanbeings reason and learn.Kasparov (2017) points precisely
to this concern:

We confuse performance – the ability of a machine to replicate or surpass the
results of a human – with method, how those results are achieved. This fallacy
has proved irresistible in the domain of higher intelligence that is unique toHomo
Sapiens.
There are actually two separate but related versions of the fallacy. The first is
“the only way amachine will ever be able to doX is if it reaches a level of general
intelligence close to a human’s.” The second, “if we can make a machine that
can do X as well as a human, we will have figured out something very profound
about the nature of intelligence. (Kasparov 2017, p. 26)

One might argue that these programs can be viewed as imitating the ways in which
underlying neural architectures in our brains aid learning and recognition of patterns.
In other words, they belong to the ‘as if ’ category. However, this may not be a com-
pelling argument, at least as yet, since we have not been able to conclusively verify
such a claim. Also it is worth noting that the computational power of artificial neural
networks – convolutional or not – do not exceed those of Turing machines. Insofar as
one accepts the thesis that all intuitively calculable functions (by humans) are Turing
computable and that all human decision making and learning are through computa-
tional processes (in the sense of digital computation),30 theoretically uncomputable
problems concerning learning still remain beyond the reach of human beings.31

Third, one of the important characteristics of human learning processes is that it is
terribly slow. This may be related to the specific information processing character of
the human beings. For modernmachine learning programs, efficiency is a key criterion
and they do not focus on explaining the causes for these peculiarities in learning and
why they are unique to human beings.32 This was to be a priority for machine learning
according to Simon. In Simon (1983, p. 26), he makes a useful distinction concerning
two goals of AI that may be of worth pointing out here:

Artificial intelligence has two goals. First, AI is directed toward getting com-
puters to be smart and do smart things so that human beings don’t have to do
them. And second, AI (sometimes called cognitive simulation, or information
processing psychology) is also directed at using computers to simulate human
beings, so that we can find out how humans work and perhaps can help them to
be a little better in their work - (italics added)

30 One implicitly assumes this while using computational methods to understand cognition and learning.
31 These may be strong assumptions. Further, these only indicate the boundaries concerning what can and
cannot be solved using algorithmic methods. That does not mean that human beings cannot or will not find
creative ways to solve these problems or learn through non-recursive means. Further complications ensue
if one considers analogue computation and constructive methods that do not presuppose the Church-Turing
thesis.
32 As Simon (1983, p. 26) notes: “It should give us some pause, when we build machine learning systems,
to imagine what can possibly be going on during all the time a human being is mastering a “simple” skill.”
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Fourth, a hallmarkof human learning is that they rely heavily on the use of analogical
reasoning while learning. Human beings routinely employ analogies across different
problem domains. This clearly is a sign of intelligent behaviour that is missing in
machine learning such as deep learning. They are often designed for a specific problem
and focus on associations rather than analogy.

Fifth, the essence of human learning on the other hand can be seen as an accumu-
lation of a set of principles or models that can employed across problem domains.
The role of pattern recognition may be an important component of learning in human
beings, but it is by no means the only feature involved. Human learning activity seem
to involve continuously building causal models of reasoning (however imperfect they
may be), deducing patterns and also a component involving finding meta-patterns
in inferential procedures underlying pattern deduction across a variety of problems.
This meta-level transferability of knowledge is rarely captured in many of the machine
learningmodels thatwehavediscussed above.Learning, seen thisway, is about extract-
ing, retaining and transferring knowledge and interesting patterns.33

Sixth, constructing causal models – or building any model for that matter – nec-
essarily involves excluding a lot of the information in an environment and relying
only on a subset that the learner considers relevant. In the case of board games, it
involves discriminating attention and focusing only on those structures that are rel-
evant, and exploring various consequences. This is also what seems to underlie the
act of structured search and much of human learning. As Simon points out, human
decision making involves human beings structuring what may appear to be a complex
problem through relevant representations based on selective features. Learning would
then involve the process of refining and enriching these (internal) representations and
the associated set of actions or heuristics.34 In modern machine learning, the role of
internal representation of the problem and the task environment is trivialized.35

Seventh, an aspect that is often ignored in machine learning models is the role of
natural language in learning. Human beings do learn from each other and this often
involves communication,mainly through natural language. For instance, specific terms
associated with various patterns in Go (or chess) that have been developed and com-
municated to players over the years as they learn. It helps players drastically reduce
descriptive complexity of patterns on the board, remember and recall them easily
(Kao 2013, pp. 95–98). This important aspect of human learning where players accu-
mulate relevant vocabulary is often absent in machine learning.36 Thus, for humans,

33 StanislawUlam (1990, p. 513) paraphrases this idea through a quotewhich he attributes to StefanBanach:
‘Goodmathematicians see analogies between theorems or theories, the very best ones see analogies between
analogies’.
34 It is well known that when presented with the same chess or Go boards, an expert – or a learned – player
perceives it differently than a novice would.
35 To be precise, convolutional neural networks also rely on (layers of) representations and relevant features
for these representations are themselves inferred from large training data. In contrast, psychological factors
such as attention play an important part in human players. Also, layered representation is not in the form
of explicitly structured knowledge to constitute a useful explanation about learning.
36 Newell and Simon (1972, pp. 781–782) make a similar point: “In the years required to attain master-
ship in chess, a playermight be expected to acquire a “vocabulary” of familiar sub-patterns comparable to the
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learning constitutes more or less a permanent change in their knowledge structure,
contents of which can be readily employed in the future, even in entirely different task
environments.37

Finally, machine learning algorithms often need a vast amount of data to learn –
as in AlphaGo – and in contrast human beings seem to be good at learning from
relatively fewer examples. By this, we do not mean human beings necessarily learn
faster, but only that they do so with fewer examples. Note that the training sets in
the supervised learning in the case of AlphaGo and the knowledge base of Deep
Blue are in fact actual games of expert human players. The objective behind research
on human learning should therefore be one of unearthing processes that lie behind
how human beings gain such expertise overtime and not merely using that expertise
to build engines that generate human-like performance. It is reasonable to envisage
developments that would enable future programs like AlphaGo gaining impressive
expertise purely through self-play. An argument can be made about the crucial role of
self-play in machine learning programs, justifying it as a plausible way to account for
counter-factual or fictitious mental games. However, this argument is tenuous at best
since it does not explain how exactly learning occurs and it is silent on the associated
change in knowledge structures. Corresponding aspects of human learning, in our
opinion, can be better explained through the lens of chunking: increasing modularity
and sophistication of chunks in the memory and a refinement in mapping them to
appropriate actions and heuristics.

It may argued that programs such as AlphaGo are at least not brute-force based and
are akin to Shannon’s Type-B programs. There may be some merit to this argument
and it is a welcome change. Unlike Deep Blue, they consider much fewer moves
while making decisions by pruning the search space using smart heuristics. However,
despite this attractive feature, we note that the lack of brute force or the presence of
pruning alone does not make it human-like. Instead, it is the nature and contents of
these heuristics that need to be taken in to account.

There is another issue that is relevant in this context: how are we to discriminate
among many potential machine learning programs that exhibit the same level of per-
formance?We argue that the possibility of executing these learning processes by actual
human beings should be the criteria to discriminate between different sufficient expla-
nations. It is here that empirical and experimental studies in cognitive and behavioural
psychology would play an important role. Among those computational learning the-
ories which meet the criteria of actual human implementability, preference should be
given to parsimonious – not merely simple – theories.38

Footnote 36 continued
visual word-recognition vocabularies of persons able to read English, or Kanji (or Kanji-pair) recognition
vocabularies of persons reading Chinese or Japanese.”
37 “Learning denotes changes in the system that are adaptive in the sense that they enable, the system to
do the same task or tasks drawn from the same population more efficiently and more effectively the next
time”. (Simon 1983, p. 28)
38 We use the terms simplicity and parsimony in the algorithmic information theoretic sense in which they
are used in Simon (2001).
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4.1 Computational Model Versus Computational Explanation

This is a grail worthy of a holy quest, especially “explain”. Even the strongest
chess programs in the world can’t explain any rationales behind their brilliant
moves beyond elementary tactical sequences. They play a strong move simply
because it was evaluated to be better than anything else, not by using the type of
applied reasoning a human would understand.

A distinction between a computational model and a computational explanation in
this context may be of use. In a computational model, one strives to describe the
behaviour of a system without necessarily implying that the underlying system or its
components perform computation. On the other hand, in a computational explanation,
one explains the behaviour of a system by specific computational processes that are
internal to the system (Piccinini 2015, p. 60).Differences betweenSimon’s approach to
humanproblem solving and bounded rationality and the contrasting position ofmodern
machine learning programs using deep learning can be seen through this lens. For
Simon, the use of computers to learn and play complex gameswas a ‘deliberate attempt
to simulate human thought processes’ (Newell et al. 1958, p. 334, italics added). It was
not for the chess programs to achieve human-like performances alone. In this sense,
one can argue that computational methods were not just reasonable vehicles or devices
for modelling for Simon, but they were intended to explain how computationally
constrained human beings operate in complex environments.

A few remarks concerning computability and computational complexity in Simon’s
approach may be pertinent. Although Simon’s human problem solving and learning
can be legitimately interpreted in terms of computability theory, he himself seems to be
uninterested in them. He felt that limits to computability, though relevant as a potential
outer boundary for human procedural reasoning, may not be binding or important for
actual human decision makers since they are severely constrained in their abilities
to compute. He made a distinction between computability in principle and practical
computability (Simon 1973, pp. 185–186). Similarly, he expressed scepticism about
the relevance of results on computational complexity as it mainly addressed worst-
case complexity of algorithms. Instead, for him, it was the average-case complexity
that human beings encounter in their day-to-day which merits focus (Simon 2000, p.
247).

5 Conclusion

In this paper, we considered the problem of learning by humans and machines with a
particular focus on complex board games like chess and Go. These games have been
viewed as ideal grounds for understanding the ingenuity of human intelligence and they
have been amenable to investigation through computational methods.We surveyed the
approaches to learning in classical game theory which resorts to substantive rationality
and optimization. We contrasted it with Herbert Simon’s approach, which focused on
procedural rationality exhibited by boundedly rational agents for whom optimization
in such complex environments is out of reach. Given that computational methods
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play an important role in the procedural theories of Simon, we examined various
computational theories of learning.

Although recent achievements of machine learning algorithms in playing against
human players have been commendable in complex board games, we argued that these
are not particularly illuminating in providing reasonable explanations concerning how
humans actually learn. Consequently, we find them departing from Simon’s life long
quest to understand the mechanics of human problem solving. We feel that impressive
developments inmodel-free learning and in the areas of pattern recognition algorithms
can be imaginatively integrated with the classical approach to AI. Studies such as Lake
et al. (2016) point us in this direction.

Simon’s research program on bounded rationality, human problem solving and
learning was not merely subversive, intended solely to challenge the established view
regarding human decisionmaking in economics. Instead, it was amuch broader, ambi-
tious project in which he studied actual human beings and their decision making
processes closely. He seems to have never shied away from dirtying his hands with
all the messiness and glory associated with human decision making, always seeking
explanations and trying to unlock its mysteries. He was more akin to a renaissance
man, not lured by highly technical, mathematical models or their performance alone.
In his efforts, Simon, much like Turing, was always a firm believer in ‘the inadequacy
of reason unsupported by common sense’ (Turing 1954).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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