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Abstract

We investigated whether graphomotor organization during a digitized Clock Drawing Test (dCDT) 

would be associated with cognitive and/or brain structural differences detected with a 

tractography-derived structural connectome of the brain. 72 non-demented/non-depressed adults 

were categorized based on whether or not they used ‘anchor’ digits (i.e., 12,3,6,9) before any other 

digits while completing dCDT instructions to “draw the face of a clock with all the numbers and 

set the hands to 10 after 11”. ‘Anchorers’ were compared to ‘non-anchorers’ across dCDT, 

additional cognitive measures and connectome-based metrics. In the context of grossly intact clock 

drawings, anchorers required fewer strokes to complete the dCDT and outperformed non-

anchorers on executive functioning and learning/memory/recognition tasks. Anchorers had higher 

local efficiency for the left medial orbitofrontal and transverse temporal cortices as well as the 

right rostral anterior cingulate and superior frontal gyrus versus non-anchorers suggesting better 
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regional integration within local networks involving these regions; select aspects of which 

correlated with cognition. Results also revealed that anchorers’ exhibited a higher degree of 

modular integration among heteromodal regions of the ventral visual processing stream versus 

non-anchorers. Thus, an easily observable graphomotor distinction was associated with 1) better 

performance in specific cognitive domains, 2) higher local efficiency suggesting better regional 

integration, and 3) more sophisticated modular integration involving the ventral (‘what’) 

visuospatial processing stream. Taken together, these results enhance our knowledge of the brain-

behavior relationships underlying unprompted graphomotor organization during dCDT.

Graphical Abstract

Older adults who plan out visuospatial performance show a more integrated modular network 

involving heteromodal regions (in yellow) of the ventral (‘what’) visuospatial processing stream 

(in red) than older adults who do not plan their performance who incorporate more unimodal 

regions (in blue).
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executive functioning; aging; human connectome; neural network; clock drawing; digital clock 
drawing

1.0 Introduction

The clock drawing test, one of the most commonly used tests by neuropsychologists (Rabin, 

Barr, & Burton, 2005), provides an economical and comprehensive assessment of multiple 

cognitive domains including, but not limited to, graphomotor/visuoconstructional abilities, 

executive functioning, and access to semantic knowledge (Cosentino, Jefferson, Chute, 
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Kaplan, & Libon, 2004; Libon, Malamut, Swenson, Sands, & Cloud, 1996; Royall, Cordes, 

& Polk, 1998). Performance on the clock drawing test has also been shown to indicate the 

integrity of subcortical structures (Samton, et al., 2005) as well as focal brain dysfunction 

(Tranel, Rudrauf, Vianna, & Damasio, 2008). Determinations of ‘impaired’ from 

‘unimpaired’ performance, particularly during bedside screening when limited time and 

tools may be available, have traditionally focused on gross or visually observable errors in 

output by clinical populations, especially individuals with dementias. Less work has been 

done studying clock drawing test performance-based outcomes reflecting successful 

performance, i.e., lacking gross or observable errors. It may be that subtle individual 

differences may signal larger distinctions in cognition and/or brain structure worth 

considering. Advances in digital technology allow for a closer inspection of successful clock 

drawing performance including the efficient use of time and graphomotor output to facilitate 

performance (Davis, et al., 2010; Penney, Davis, et al., 2010). Likewise, advances in brain 

network analysis or brain connectomics have emerged as an exciting way to examine neural 

organization (Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). We used a digital CDT 

(dCDT) to determine what subtleties in successful clock drawing performance revealed 

about higher-level cognition and underlying brain connectomics.

The Clock Drawing Task (CDT) (digital or not), requires participants to “draw the face of a 

clock with all the numbers and set the hands to 10 after 11”; it has long provided an 

assessment of multiple cognitive domains (Cosentino, et al., 2004; Libon, et al., 1996; 

Royall, et al., 1998). For example, evidence suggests the CDT requires executive functioning 

during the Command condition (Cohen, et al., 2014; Cosentino, et al., 2004) when 

participants must initiate, unassisted, CDT task demands. Likewise, a larger brain network 

including prefrontal as well as right parietal and bilateral temporal regions is thought to be 

involved in Command condition performance compared to Copy and/or ‘pre-drawn’ CDT 

trials (Matsuoka, et al., 2011). Thus, spontaneous graphomotor organization during the CDT 

Command condition, e.g., deliberately placing the 12, 6, 3, and/or 9 to ensure adequate 

spacing of all numbers, may promote executive functioning in the form of greater efficiency 

during the task. It may also signal better cognitive functions and underlying neural 

organization more generally when compared to individuals who lack such organization. It 

follows that such a distinction may differentiate groups of individuals with otherwise grossly 

intact performance.

Borrowing techniques from graph theory in mathematics, connectomics examines the brain 

as a ‘graph’ or network, thus allowing us to gain insight into integrative patterns of brain 

connectivity. Indeed, instead of focusing on few connections linking select regions-of-

interest, connectomics allows for a graph-theoretical assessment of system properties in 

order to quantitatively understand how brain regions or ‘nodes’ communicate and interact. 

Additionally, advanced graph-theoretical ‘modularity analysis’ investigates how a group of 

nodes preferentially interact among themselves to form a community or module, which can 

then be compared between groups of brain networks to assess for ‘modular’ differences 

(GadElkarim, et al., 2012; Ye, et al., 2015). Understanding not only the cognitive differences 

associated with graphomotor organization during the CDT but also their connectome 

neurocircuit underpinnings may enhance our knowledge of the brain-behavior relationships 
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that underlie unprompted (graphomotor) organization during bedside evaluations of overall 

cognitive performance.

The overarching goal of this study is to determine the cognitive and neural phenotypes of 

adults who, without prompting, use graphomotor organization during CDT compared to 

adults who do not use such organization. We hypothesize that individuals who ‘anchor’ 

digits 12, 6, 3, and/or 9 (i.e., deliberately place these numbers to ensure adequate spacing of 

all digits) will be more efficient in completing a digitized version of the CDT (Davis, et al., 

2010; Penney, Davis, et al., 2010). We will measure efficiency by quantifying total 

graphomotor output in strokes and time to completion in milliseconds (Cohen, et al., 2014; 

Penney, Libon, et al., 2010). We further hypothesize that these same individuals will display 

better executive functioning using independent test measures when compared to ‘non-

anchorers’. Given that prefrontal, temporal and parietal regions have been implicated in 

CDT performance including the organization of spatial information such as the layout of 

numbers (Ino, Asada, Ito, Kimura, & Fukuyama, 2003; Lee, et al., 2008; Matsuoka, et al., 

2011; Parks, et al., 2010; Samton, et al., 2005; Tranel, et al., 2008), we hypothesize that 

individuals who organize their CDT output (versus those who do not) will also show more 

efficient neural networks associated with these brain regions.

2.0 Materials and Methods

2.1 Participants

Participants, 55 years or older, were recruited through community outreach (e.g., 

advertisements, fliers) for a larger program of research at the University of Illinois at 

Chicago (UIC) Department of Psychiatry that included a study of Type 2 diabetes and 

depression. Informed consent was obtained according to the Institutional Review Board 

guidelines at UIC and in accordance with the Declaration of Helsinki.

An initial telephone screen determined study eligibility. At this screen, exclusion criteria for 

consideration as a healthy control included a diagnosis of any Axis I disorder (including 

depression), a history of head trauma or loss of consciousness, a history or presence of any 

neurological disorders (e.g., dementia, stroke, seizure), and/or substance abuse or 

dependence. A history of stable or remitted medical disorders was not an exclusionary 

factor.

Following the telephone screen, participants were scheduled for cognitive (e.g., Mini Mental 

State Examination; MMSE) (Folstein, 1975) and affective (e.g., Structured Clinical 

Interview for the DSM-IV; SCID) (Spitzer, Williams, Gibbon, & First, 1992) screens, 

administered by a trained research assistant, for determination of final inclusion or 

exclusion. Additionally, either a board certified (AK) or board eligible (OA) psychiatrist 

completed the 17-item Hamilton Rating Scale of Depression (HAM-D) (Hamilton, 1960) for 

final determination of the absence of depression. Non-depressed adults were defined by a 

HAM-D≤8 and an absence of depressive symptoms based on the SCID. All raters were blind 

to telephone screen information.
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Of the 90 participants eligible for inclusion based on the above criteria, 13 were excluded 

for: antidepressant use for nerve pain/insomnia-2; missing behavioral data-4; English as a 

second language-6; or having a diagnostic history of depression-1. This left 77 eligible 

participants.

2.2 Neuropsychological Protocol

2.2.1 The Digital Clock Drawing Test (dCDT) (Davis, et al., 2010; Penney, Libon, 
et al., 2010)—The dCDT was developed by the Lahey Clinic and Massachusetts Institute 

of Technology in collaboration with the Clock Sketch Consortium and uses digital pen 

technology developed by Anoto, Inc. The pen works as an ordinary ballpoint pen while 

capturing pen position 80 times/second ±0.002. Thus, the data reported by the pen is time-

stamped; allowing the pen to capture the final product (i.e., the clock drawing) as well as the 

behavior that produced it for more accurate classifications than would be possible without 

this technology.

As with the CDT, the dCDT utilizes one trial of two conditions: Command and Copy. In the 

Command condition, participants are asked to “draw the face of a clock with all of the 

numbers and set the hands to 10 after 11.” The Copy condition asks participants to copy a 

model of a clock with the hands set for ‘10 after 11’. The Copy condition is always 

presented immediately after the Command condition is complete so as not to spoil 

spontaneous output during the Command condition. Below are the parameters for the current 

research. It should be noted that the observance of anchoring behavior does not require 

digital technology although the dCDT software does allow for the confirmation of digit 

order and the classification of anchoring. We utilized dCDT scoring software to 

automatically capture other behavior that would be difficult to obtain otherwise including 

total number of strokes and total time to completion outlined below.

• Anchors – Anchors, i.e., digits used to set guidelines for where the remaining digits 

will be placed on the clock face during the Command condition, served as our 

measure of prospective planning. Anchor digits (numbers 12, 3, 6 and/or 9; Table 1) 

had to be drawn before all other digits. Two or four anchors could be used, as these 

digits set the framework for all other digits within the clock.

• Total Number of Strokes – calculated as the total number of distinct graphomotor 

marks (i.e., strokes) completed with the pen during clock drawing to Command and 

to Copy.

• Total Time to Completion – calculated as the total time taken to complete the dCDT 

during the Command condition and again during the Copy condition. Time was 

documented from when the participant starts drawing, i.e., initial ink on the page, to 

the end of the clock's final element.

2.2.2 Additional Cognitive Tasks

A larger neuropsychological protocol tested cognitive domains of executive functioning 

(EF), attention and information processing (AIP), learning/memory/recognition (LMR), and 

semantic language (SEM). These domains, based on theoretical groupings of similar test 

variables of interest (VOIs) as published in the literature (Charlton, Lamar, et al., 2014; 
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Cohen, et al., 2014; Lamar, et al., 2015), were as follows: EF – Trail Making Test (TMT) 

Part B time to completion, Wechsler Adult Intelligence Scale 3rd Edition (WAIS-III) 

(Wechsler, 1997a) Digit Span-Backward subtest raw score and Matrix Reasoning raw score, 

and the Self-Ordered Pointing Task total errors (Petrides, Alivisatos, & Frey, 2002); AIP – 

raw scores from the Stroop Color Naming and Word Reading trials (Golden, 1978), WAIS-

III Digit-Symbol Coding (Wechsler, 1997a), and TMT-A time to completion; LMR – the 

California Verbal Learning Test – 2nd Edition (CVLT) (Delis & Kramer, 2000) Immediate 

and Long Delay Free Recall totals and Recognition Discriminability Index calculated by [1-

(false positive+misses/# possible correct)]*100, Wechsler Memory Scale – 3rd Edition 

(WMS-III) (Wechsler, 1997b) Logical Memory I, II and Recognition raw scores, as well as 

Visual Reproduction I, II and Recognition raw scores; and SEM – Animal fluency measures 

of total correct, percent in cluster, and the Association Index (Carew, Lamar, Cloud, 

Grossman, & Libon, 1997).

VOI described above were standardized across the entire sample with z-scores reversed 

where appropriate (e.g., TMT times to completion) so that higher scores always reflected 

better performance. Composite z-scores were then calculated for EF, AIP, LMR, and SEM. 

Cronbach's alphas for each cognitive domain evaluated how well the variables measured 

each latent construct across the entire sample; resulting values suggested that each 

composite score measured a unidimensional latent construct (EF, α=.72; AIP, α=.85; LMR, 

α=.88; SEM, α=.74).

Participants also completed the Wechsler Test of Adult Reading (Wechsler, 2001) to obtain a 

predicted verbal IQ (pVIQ), the Center for Epidemiological Study of Depression scale 

(CESD) (Radloff, 1977; Radloff & Teri, 1986) to obtain a subjective measure of depressive 

symptomatology and Visual Reproduction Copy raw score from the WMS-III for an 

estimate of visuospatial skills.

2.3 Neuroimaging Protocol

2.3.1 Data Acquisition—Brain MRI was acquired on a Philips Achieva 3T scanner 

(Philips Medical Systems, Best, The Netherlands) using an 8-channel SENSE (Sensitivity 

Encoding) head coil. Participants were positioned comfortably in the scanner and fitted with 

earplugs. Foam pads minimized head movement and participants were instructed to remain 

still throughout the scan. High resolution three-dimensional T1-weighted images were 

acquired with a MPRAGE sequence (field of view: FOV=240mm; 134 contiguous axial 

slices; TR/TE=8.4/3.9ms; flip angle=8°; voxel size=1.1×1.1×1.1mm3). DTI images were 

acquired using single-shot spin-echo EPI sequence (FOV=240mm; voxel 

size=0.83×0.83×2.2mm3; TR/TE=6,994/71ms; flip angle=90°). Sixty-seven contiguous axial 

slices aligned to the AC-PC line were collected in 32 gradient directions with b=700s/mm2. 

Parallel imaging technique was utilized with a factor of 2.5 to reduce scanning time to 

approximately 4 minutes. The acquisition of these images was part of a larger protocol.

2.3.2 Image Analysis—To generate connectome data and network efficiency information 

using graph theory analyses, a pipeline was constructed which integrates multiple image 

analysis techniques. DTI was eddy current corrected using the automatic image registration 
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tool in DTI-Studio (http://www.mristudio.org) by registering all diffusion-weighted images 

to their corresponding b0 images. An eddy current correction technique using affine 

transformation was performed (rotation, translation, scaling and shear, 12-parameters). This 

was followed by the computation of diffusion tensors then deterministic tractography using 

Fiber Assignment by Continuous Tracking (FACT) algorithm built into the DTI-Studio 

program. For each subject, tractography was first performed by tracking the whole brain, 

initiating tracts at each voxel. Fiber tracking was stopped when FA value fell below 0.15 or a 

turning angle became larger than 60°.

T1-weighted images were used to generate label maps using FreeSurfer (http://

surfer.nmr.mgh.harvard.edu/) for volumetric segmentation (Desikan, et al., 2006; Destrieux, 

Fischl, Dale, & Halgren, 2010; Fischl, et al., 2004). Each label map is composed of 87 

different grey matter regions of interest (ROIs), which include cortical and subcortical 

regions, brainstem and cerebellum.

In brief, we generated brain structural networks by counting the number of reconstructed 

streamlines resulting from DTI-Studio white matter tractography data described above that 

connected every pair of grey matter ROIs defined by Freesurfer's parcellation atlas (i.e., the 

87 ROIs); this in-house developed pipeline has been previously published and described in 

more detail in (Ajilore, Lamar, & Kumar, 2014; Charlton, Leow, et al., 2014). The resulting 

matrices were then analyzed using the Brain Connectivity Toolbox (BCT) (Rubinov & 

Sporns, 2010). In order to minimize multiple comparisons of graph theory metrics, variables 

of interest were carefully selected to represent global and local system properties that have 

been shown to be associated with aging and cognitive function (Ajilore, et al., 2014; Brown, 

et al., 2011; Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015; Wen, et al., 2011).

In graph theory, a network is a set of ‘nodes’ or brain regions with ‘edges’ or connections 

between them. Various metrics have been proposed (see Rubinov & Sporns, 2011, Rubinov, 

2010 #98 for details) and it has been suggested that an optimized network can be described 

as exhibiting a balance between global integration (measured using network efficiency or 

shortest path length) and local segregation (measured using clustering coefficient). Our 

graph theory metrics of network system properties included measures of 1) normalized 

clustering coefficient or Gamma which quantifies the strength of interconnection among 

neighborhood nodes (higher clustering indicates that the immediate neighbors of a node tend 

to be immediate neighbors among themselves, thus collectively forming a tightly-knit 

“cluster”); 2) normalized characteristic path length or Lambda which measures the averaged 

graph distance between nodes, thus indicating the overall efficiency in information transfer 

(the lower the path length the higher the efficiency). Both 1 and 2 were normalized against 

1,000 randomly generated networks with the same number of nodes and edge distribution; 

and 3) normalized global network efficiency or Eglobal (how efficiently the entire network 

exchanges information; note this measure is considered closely related to the characteristic 

path length and mathematically there is an inverse relationship between their values). Last, 

regional connectivity of a node (Wen, et al., 2011) was measured using the local efficiency, 

mathematically defined as the Eglobal with respect to the graph formed by the local 

neighborhood of this node (Rubinov & Sporns, 2010). These metrics were calculated using 

the Brain Connectivity Toolbox. For detailed description of the equations, please refer to 
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(Rubinov & Sporns, 2010). Connectome data was visualized using BrainNet Viewer (Xia, 

Wang, & He, 2013).

For connectome hierarchical modularity analysis, i.e., how local nodes or brain regions 

interact to form communities or modules, we employed the path length associated 
community estimation (PLACE) technique (Gadelkarim, et al., 2014; GadElkarim, et al., 

2012) which was fully developed in-house in order to compare a connectome's hierarchical 

modularity between groups. Instead of the well-known Q modularity metric that only takes 

into account the connections or edges at the intra-community level, PLACE extracts 

communities via optimal edge partition into two categories: connections between versus 

connections within communities. Previously work has shown this approach to be 

advantageous when compared to modularity metric “Q” (Gadelkarim, et al., 2014), namely 

PLACE does not suffer from the same resolution limits as Q. Mathematically, PLACE 

utilizes a path length based novel metric and exploits powers of 2 to compute regularly 

hierarchical trees. In order to extract community structures at each tree-level using PLACE, 

nodes were assigned to one of two communities by maximizing the difference between the 

mean inter-modular and the mean intra-modular path lengths (Gadelkarim, et al., 2014; 

GadElkarim, et al., 2012). To quantify modular or community affiliation differences, 

PLACE, designed for various computational strategies, compared the scaled inclusivity 

metric V that quantifies affiliation ‘mis-match’ between two modular structures at a specific 

node or a specific community (V ranges from 0 to 1; 0 indicates no modular pattern is 

shared at this node while 1 indicates a complete match).

2.4 Statistical analyses

Group differences for demographic variables were tested using IBM SPSS Statistics v20 

analysis of variance (ANOVA) for continuous variables and chi-square tests for categorical 

variables. For dCDT and cognitive variables, one-way ANOVAs were performed controlling 

for statistically significant demographic variables as appropriate.

Connectome metrics were analyzed using independent t-tests and Q<0.30 for false discovery 

rate (FDR) bounds; Q is a statistically distinct threshold from p-values (Benjamini & 

Hochberg, 1995; Bhaumik, et al., 2009) previously employed to successfully control for type 

I error rate for multiple comparisons (Charlton, Leow, et al., 2014; Kumar, et al., 2015). 

PLACE analyses (Gadelkarim, et al., 2014; GadElkarim, et al., 2012) used the anchorer 

subjects as the reference group and tested for group modular differences in V using two-

sample Hotelling T-squared test, p≤.05.

We performed post-hoc correlations (with and without adjustments as appropriate) to 

determine if significant between-group differences resulting from our connectome analyses 

related to significant between-group differences resulting from our cognitive analyses. To 

minimize the number of correlations, we restricted our analyses to variables where there 

were significant group differences regardless of adjustments and that had been previously 

associated in the connectome literature, e.g., local efficiency and memory and executive 

functioning (Ajilore, et al., 2014; Brown, et al., 2011; Geerligs, et al., 2015; Wen, et al., 

2011).
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3.0 Results

3.1 Demographics

Six participants were excluded because they did not meet criteria for either group based on 

anchoring behavior as described above. This left 71 individuals (41 women) with an average 

age of 66.85±6.45; 36 anchorers (31 anchored all 4 digits) and 35 non-anchorers (Table 1). 

All participants were native English speakers (42 Caucasian, 25 African American, 4 

Hispanic/Asian/Other) with an average education of 15.18±2.89 and MMSE scores ≥ 25.

Individual ANOVAs did not reveal any significant group differences for age, MMSE, years 

of education, pVIQ or CESD (p-values≥0.09) and chi-square testing did not reveal any 

significant differences in sex or race distributions between groups (Table 1). There were no 

significant group differences on our estimate of visuospatial skills (i.e., the WMS-III Visual 

Reproduction Copy raw score; p=0.11). Thus, we did not adjust for any demographic 

variables in our analyses.

Given individuals with Type 2 diabetes were oversampled for the larger program of research, 

we investigated the number of individuals in our final sample with this vascular risk. Thirty-

three individuals had Type 2 diabetes; however, chi-square analyses revealed equal 

representation across our groups (p=0.41; Table 1). We further compared our groups on 

diabetes duration (months) and severity (hemoglobin A1c or hA1c, a measure of average 

plasma glucose concentration over prolonged periods of time). There were no significant 

between-group differences on these diabetes measures (p≥0.20; Table 1). As the presence of 

Type 2 diabetes has been associated with cognitive and brain structural alterations in older 

and younger adults (Bangen, et al., 2015; Weinstein, et al., 2015) we performed all analyses 

with and without the covariate of hA1c to ensure that diabetes did not affect our reported 

results.

3.2 dCDT

3.2.1 dCDT Overall Performance—Clock performance was evaluated for gross and 

observable differences based on a comparison to previously published work in healthy 

controls and clinically deemed to be within normal limits. Using a published scoring system 

to quantify the size, shape and position of the clock face, numbers and hands on a 0-10 scale 

(Libon, et al., 1996; Libon, Swenson, Barnoski, & Sands, 1993), group differences during 

the Command condition (anchorers=8.61±1.27, non-anchorers=7.97±1.40; p=0.05) did not 

remain significant once adjusting for hA1c (p=0.11). Non-Anchorers did not perform as well 

as Anchorers during the Copy condition (anchorers=8.97±0.87, non-anchorers=8.43±1.0 

p=0.01) regardless of covariates.

3.2.2 dCDT Efficiency—Groups did not differ in total time to completion for either 

Command or Copy condition (Table 2). There was a significant difference between groups 

for total strokes to completion (anchorers used fewer strokes than non-anchorers), but only 

in the Command condition [F(1, 70)=4.31; p=0.04]. This result did not meet our a priori 

threshold for significance after adjusting for hA1c (p=0.08).
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3.3 Cognition

Despite equivalent pVIQ, individual ANOVAs revealed significant differences for EF [F(1, 

64)=7.31; p=0.009] and LMR [F(1, 66)=7.45; p=.008], such that anchorers outperformed 

non-anchorers in both domains (Table 2). Results for AIP and SEM were not significant 

(Table 2). Results did not change when using hA1c as a covariate or after multiple 

comparison correction (p≤0.01).

3.4 Neuroimaging

Of the 71 participants included in the behavioral analyses, 29 did not have DTI data for 

extraction of connectome data secondary to time constraints in the scanner. Characteristics 

(demographics and dCDT) of this smaller MRI sample (n=43) remained unchanged from 

those reported for the larger sample and no between group differences were noted in the 

demographics of this smaller sample of anchorers and non-anchorers (Table 1).

3.4.1 Global and local network metrics—There were no significant differences 

between groups across global system properties of clustering coefficient, path length or 

network efficiency (all p-values >0.65; Table 3).

By contrast, local-level analyses revealed significantly higher efficiency for anchorers versus 

non-anchorers in the left medial orbitofrontal cortex (OFC), t(41)=−2.7, p=0.01, left 

transverse temporal cortex (Heschl's gyrus), t(41)=−3.2, p=0.003, right rostral anterior 

cingulate cortex (ACC) , t(41)=−2.8, p=0.008, and right superior frontal gyrus (SFG), t(41)=

−3.1, p=0.003 (Table 3) controlling for multiple comparisons.

Post-hoc correlational analyses (2-tailed) between the local efficiency of these four regions 

and the significantly different cognitive domains revealed associations between the right 

SFG and EF, r(38)=.47, p=.003, and the right SFG and LMR, r(39)=.45, p=.005, only 

(Figure 1). There were no other significant correlations between the local efficiency of the 

four identified regions and the significantly different cognitive domains. Not surprisingly, EF 

and LMR were significantly correlated with each other, r(38)=.78, p<0.001. None of our 

post-hoc correlational analyses changed with the addition of hA1c as a covariate.

3.4.2 Hierarchical modularity analyses—After correcting for multiple comparisons, 

results of our investigation of modular organization between-groups (Figure 2) revealed 

differential patterns of affiliation in the right hemisphere involving the fusiform gyrus, 

lateral occipital cortex, pericalcarine cortex, and lingual gyrus (p=0.003). In anchorers, these 

regions together formed one module that also included the right inferior temporal cortex. By 

contrast, in place of right inferior temporal cortex, non-anchorers’ module incorporated the 

right cuneus.

Post-hoc, we explored PLACE-derived V values for each subject in the right inferior 

temporal cortex and the right cuneus as they related to cognition; correlational analyses (2-

tailed) between V values in these distinct regions and EF and LMR were not significant.
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4.0 Conclusions

As hypothesized, individual differences in graphomotor organization as defined by 

anchoring behavior during the dCDT associated with distinct cognitive skills and underlying 

neural phenotypes. dCDT clock accuracy was better for anchorers and the dCDT metric 

recording the total number of strokes used during performance was lower for anchorers than 

non-anchorers; however, these results did not remain significant after adjusting for hA1c. 

Anchorers also demonstrated superior EF as well as LMR compared to non-anchorers within 

the context of equivalent pVIQ. Although global network properties of structural 

connectome did not differ between groups, local network properties did differ. Specifically, 

local efficiency measured in the left medial OFC and temporal gyrus as well as the right 

rostral anterior cingulate and SFG was higher in anchorers compared to non-anchorers; 

furthermore, local efficiency of the right SFG was associated with better cognitive abilities. 

Modularity analyses found differences between anchorers and non-anchorers in key right 

hemisphere regions associated with the ventral visual processing stream. Taken together, 

these results suggest that individual differences in easily observable graphomotor behaviors 

may reflect subtle differences (and some brain-behavior associates) across other cognitive 

domains and brain networks.

From the perspective of using the CDT as a bedside screen to determine ‘impaired’ from 

‘unimpaired’ performance, had a distinction not been drawn on the basis of using 

graphomotor organization, individuals in these groups may not have appeared different from 

each other on the basis of gross CDT output. More specifically, conducting a visual 

inspection of non-anchorers’ clock drawing did not suggest gross errors in task execution 

compared to non-anchorers. Furthermore, overall cognitive functioning as measured by the 

MMSE, another commonly used bedside screener, was also comparable between groups. 

Despite this, individuals who organized their dCDT output (anchorers) displayed relative 

strengths in more detailed assessments of dCDT performance, e.g., total strokes used to 

complete the task, as well as select cognitive, e.g., executive, abilities and network 

distinctions outlined below.

More specifically, anchorers displayed differences in their connectome signature when 

compared to non-anchorers. For example, anchorers compared to non-anchorers had higher 

local efficiency for the left medial OFC, the right rostral ACC and the right SFG as well as 

the left temporal gyrus that includes Heschl's gyrus. In general terms, several of these 

regions were hypothesized to be involved in CDT performance and graphomotor 

organization more specifically based on previous research in normal and pathological aging 

(Ino, et al., 2003; Lee, et al., 2008; Matsuoka, et al., 2011; Thomann, Toro, Dos Santos, 

Essig, & Schroder, 2008; Tranel, et al., 2008). We did not, however, find support for parietal 

involvement in anchoring behavior; this may be due, in part, to the fact that our local 

efficiency results may represent a relative advantage for anchorers with respect to the 

connectivity of neurocircuits responsible for the activation, control, and regulation of 

visually guided motor acts (Izquierdo, Suda, & Murray, 2004; Koechlin, Ody, & Kouneiher, 

2003). From a theoretical perspective developed from a review of the CDT brain/behavior 

literature (Eknoyan, Hurley, & Taber, 2012), fronto-parietal and fronto-striatal circuitry 

likely play a role in the coordination of the visuospatial understanding of the CDT and the 
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executive functioning required for accurate CDT performance, respectively. It may be that 

for anchorers in our study, greater local efficiency within frontally mediated cognitive 

control regions including the rostral ACC and temporal regions thought to provide additional 

support to visuospatial abilities (Glascher, et al., 2012) including the processing and 

organization of visual stimuli (Fink, et al., 1997) promoted the evaluation (and execution) of 

planning and organization during the dCDT. It should be noted that aspects of these 

behaviors may also be supported by parietal regions (and the larger fronto-parietal and 

fronto-striatal circuitry for that matter) in both anchorers and non-anchorers, but the 

additional local efficiency of specific frontal, temporal and ACC regions may be required for 

the successful execution of anchoring behavior. This conclusion is further supported by the 

significant correlations between the SFG's local efficiency and EF and LMR measures. Not 

only is our work consistent with the literature showing higher local efficiency correlating 

with better cognitive, e.g., executive and visuospatial, functioning (Ajilore, et al., 2014; 

Brown, et al., 2011; Geerligs, et al., 2015; Wen, et al., 2011), it further signals local 

efficiency distinctions that may allow for better organization of information and more 

efficient strategy use during task performance, one example of which includes graphomotor 

organization, i.e., anchoring behavior, during a CDT.

Also of note, modularity analyses identified differential patterns of affiliation within the 

right-hemisphere between anchorers and non-anchorers that also supported our hypothesis 

of connectome differences between these groups. Thus, while connectome properties linking 

visual processing regions including the fusiform (‘face’ – perhaps even clock face) region, 

the lingual gyrus, lateral occipital and pericalcarine cortices were common to both groups, 

there were also key differences. The anchorers’ module also involved the right inferior 

temporal cortex while, in contrast, the non-anchorers’ module involved the right cuneus. 

Thus, subtle distinction existed within specific regions of the well-established ventral or 

‘what’ visual processing stream (Goodale & Milner, 1992; Mishkin & Ungerleider, 1982). 

Perhaps differences in regional synergy allowed for better organization of information and 

more efficient strategy use during cognitive testing (Baria, Baliki, Parrish, & Apkarian, 

2011). For example, higher-level heteromodal aspects of the ventral visual processing stream 

may have facilitated the integration of complex object features for the anchorers while 

lower-level unimodal regions of this same pathway may have supported more basic 

processing in non-anchorers. Much like the anchorers’ relative strengths in higher-level 

cognitive abilities, their unique subnetwork inclusion of heteromodal regions of the ventral 

visual processing stream occurred within the context of equivalent visuospatial skills to their 

non-anchoring counterparts.

Our sample consisted of individuals with Type 2 diabetes. Although there was equal 

representation of affected individuals across our two groups and we statistically controlled 

for diabetes severity, we cannot rule out the possibility that diabetes may have nonetheless 

influenced our results. For example, the significant differences between our groups on dCDT 

variables weakened to non-significant p-values when adjusting for hA1c suggesting a role of 

diabetes and long term blood glucose control on these findings; however, hA1c did not alter 

any other results of this study. Additionally, diabetes is often comorbid with other 

cardiovascular disease (CVD) risk factors; however, post-hoc analysis revealed that CVD 

risk factors were not different between our groups. Thus, we are fairly certainly that neither 
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diabetes nor other CVD risk factors more generally drove our results. Our measures of 

visuospatial ability relied on overall performance on the dCDT itself in conjunction with the 

copy results of simple geometric shapes from the WMS-III Visual Reproduction test; more 

complex measures of visuospatial abilities would have strengthened this study. It may be 

argued that education should have been a covariate in our analyses; however, it did not meet 

a priori p-level thresholding and was highly correlated to other measures of global 

intelligence and cognitive processing that were not significantly different between groups, 

e.g., pVIQ.

Despite using sensitive MRI analytic techniques, limitations merit discussion. Our MRI 

sample was smaller than our cognitive sample which may have reduced our power to detect 

differences in global network properties. Our small sample size is one of the reasons why we 

did not discuss the laterality effects of our results; i.e., we did not want to over-interpret a 

‘pattern’ that may have merely resulted from the fact that homologous regions with similar 

between-group differences did not reach our a prior threshold. We would emphasize, 

however, that a lack of global network property differences is not necessarily surprising in 

the context of similar non-significant global connectome differences previously reported in 

the aging literature (Cao, et al., 2014; Stam, 2014). Furthermore, the groups’ distinguishing 

behavior, anchoring, is a discrete aspect of otherwise errorless performance and therefore 

one should not be surprised to find – as was the case – local as opposed to large-scale global 

effects. Methodologically speaking, probabilistic tractography may be more realistic in areas 

of crossing fibers than the deterministic tractography approach employed in this study; 

however, probabilistic tractography is not necessarily superior overall (Zhan, et al., 2015).

Given the fact that segmented regions are not uniform, it has been suggested that volume 

correction should be conducted to guard against the size of the ROI influencing fiber 

selection procedures. We opted not to adjust for the size of FreeSurfer ROIs given that 1) 

volume correction has the potential to overcompensate volume-driven effects on the 

streamline count and varying normalization strategies may result in varying bias on the data 

(van den Heuvel & Sporns, 2011); and 2) our groups did not differ in volume or thickness in 

the ROIs identified through local efficiency or PLACE analyses (data not shown). 

Furthermore, a study on the human connectome (van den Heuvel & Sporns, 2011) 

investigated different normalization strategies (un-weighted, weighted by streamline count, 

weighted by streamline count corrected for ROI volume, and weighted by FA values). In 

their analyses, the authors chose to focus on the un-weighted (i.e., binarized) and weighted 

by streamline count matrices (the latter approach is what we adopted in this study), as they 

argued these two strategies may be the most natural formulation in defining connectivity 

matrices.

In summary, by considering individual differences in graphomotor organization during 

otherwise visually successful performance on a simple and widely used task, subtleties in 

dCDT performance, higher-level cognition and underlying neurocircuitry were revealed. 

Individuals who anchored their dCDT performance showed greater efficiency in their overall 

dCDT output and had better performance across specific cognitive domains (i.e., EF and 

LMR). Further, these cognitive domains correlated with local efficiency of SFG, thus 

pointing to the role of SFG (and its immediate connections) in supporting anchoring 
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behavior, likely through their involvement in cognitive control as well as activation and 

regulation of visually guided motor acts. Anchorers were also distinguished from non-

anchorers in their inclusion of more heteromodal regions of the ventral visual processing 

stream suggesting better regional integration of areas that receive and process input from 

multiple sensory and/or multi-modal brain regions. We are not suggesting that anchoring 

behavior captures or explains network differences in a manner different from that of our 

measures of EF and LMR. We are suggesting that by observing the presence or absence of 

such graphomotor organization when limited in time and/or tools, e.g., at the bedside, may 

serve as a proxy measure of these cognitive domains and network differences. Future work is 

needed to confirm these associations; however, individuals that rely on the CDT to ‘screen’ 

participants should be encouraged to consider the subtle behaviors and approaches to task 

demands that may be taken when faced with a visibly ‘normal’ clock. Such observations 

may intimate other subtle cognitive and connectivity differences that are involved in these 

behaviors.
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Highlights

• We studied graphomotor organization during grossly normal clock drawing 

performance

• Organized individuals anchored the 12,3,6, and/or 9 during their clock drawing

• Anchorers had better executive functioning, learning and memory than non-

anchorers

• Anchorers had higher efficiency of a local brain network regulating motor acts

• Anchorers had more heteromodal integration of the ventral visual processing 

stream
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Figure 1. 
Scatterplots with trend lines of 2-tailed correlations between local efficiency metrics within 

the right superior frontal gyrus (rightSFG) and composite z-scores of executive functioning 

(EF; r(38)=.47, p=.003) and learning/memory/recognition (LMR; r(39)=.45, p=.005) 

stratified by group (anchorers labeled ‘+’; non-anchorers labeled ‘o’).
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Figure 2. 
Modular organization differences between-groups with common affiliations within right 

fusiform and lingual gyri as well as lateral occipital and pericalcarine cortices (in red) with a 

higher degree of modular integration with heteromodal regions of the ventral visual 

processing stream in anchorers (right inferior temporal cortex in yellow) compared to the 

unimodal integration within right cuneus seen in non-anchorers (in blue).
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Table 1

Sample Characteristics

dCDT & COGNITIVE SAMPLE Anchorers n=36 Non-Anchorers n=35 Statistics

Age (years) 66.75±5.73 66.94±7.20 F(1,69)=0.01, p=.90

Sex (M:F) 12 : 24 18 : 17 x2=2.38, p=.12

Race (white:nonwhite) 22 : 14 20 : 15 x2=0.11, p=.73

Handedness (R:L:mixed) 32 : 4 : 0 31 : 2 : 2 x2=2.66, p=.26

Education (years) 15.75±2.61 14.60±3.09 F(1,69)=2.87, p=.09

Mini-Mental State Examination 28.89±1.25 28.70±1.43 F(1,68)=0.38, p=.53

predicted verbal IQ 108.44±13.08 105.74±15.12 F(1,69)=0.65, p=.42

Hamilton Depression Rating Scale 1.42±1.66 1.80±1.66 F(1,69)=0.94, p=.33

Center for Epidemiologic Studies of Depression 5.50±4.76 7.31±5.40 F(1,69)=2.26, p=.13

WMS-III Visual Reproduction Copy 95.80±5.27 93.60±6.26 F(1,69)=2.58, p=.11

Type 2 Diabetes (healthy:diabetes) 21:15 17:18 x2=0.68, p=.41

Diabetes Duration (months) 37.34±67.75 59.22±75.57 F(1,69)=1.62, p=.20

hemoglobin A1c 6.20±0.80 6.51±1.22 F(1,69)=1.49, p=.22

CONNECTOMICS SAMPLE Anchorers n=22 Non-Anchorers n=21 Statistics

Age (years) 68.05±5.88 65.52±5.06 F(1,41)=2.26, p=.14

Sex (M:F) 6 : 16 10 : 11 x2=1.90, p=.16

Race (white:nonwhite) 12 : 10 13 : 8 x2=0.24, p=.62

Handedness (R:L:mixed) 20 : 2 : 0 18 : 2 : 1 x2=1.08, p=.58

Education (years) 15.32±2.78 14.52±2.82 F(1,41)=0.86, p=.35

Mini-Mental State Examination 28.95±1.21 29.05±1.07 F(1,41)=0.07, p=.79

predicted verbal IQ 107.18±15.20 105.00±15.06 F(1,41)=0.22, p=.64

Hamilton Depression Rating Scale 1.27±1.49 1.95±1.63 F(1,41)=2.05, p=.16

Center for Epidemiologic Studies of Depression 5.00±4.89 6.43±5.18 F(1,41)=0.86, p=.35

Type 2 Diabetes (healthy:diabetes) 15:7 9:12 x2=2.79, p=.09

hemoglobin A1c 6.15±0.87 6.54±1.24 F(1,41)=1.31, p=.26

Diabetes Duration (months) 34.72±68.87 63.86±78.40 F(1,41)=1.68, p=.20

Note: There were no between-group differences in demographic variables.
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Table 2

dCDT Efficiency and Cognitive Domains of Functioning

Anchorers n=36 Non-Anchorers n=35 p-values

no adjustment for hA1c with adjustment for hA1c

DIGITAL CLOCK (dCDT)

Drawing Time

    Command condition 37.55±12.76 42.26±25.13 0.321 0.327

    Copy condition 32.17±11.53 32.88±12.72 0.808 0.717

Number of Strokes

    Command condition 22.94±2.66 25.23±6.02 0.042 0.081

    Copy condition 23.86±2.74 24.06±3.45 0.792 0.506

COGNITIVE DOMAINS

Executive Functioning 0.27±0.55 −0.20±0.80 0.009 0.028

Attention/Information Processing 0.13±0.80 −0.10±0.84 0.245 0.298

Learning/Memory/Recognition 0.26±0.60 −0.19±0.75 0.008 0.017

Semantic Language 0.004±0.82 −0.004±0.81 0.963 0.736

NOTE: hA1c=hemoglobin A1c
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Table 3

Global System Properties and Local Efficiency Results

Anchorers n=22 Non-Anchorers n=21 Statistics

GLOBAL NETWORK PROPERTIES

Clustering Coefficient (Gamma) 2.38±0.24 2.38±0.27 t(41)=0.02, p=0.98

Path Length (Lambda) 1.22±0.21 1.21±0.07 t(41)=−0.41, p=0.69

Network efficiency (Eglobal) 0.95±0.04 0.94±0.03 t(41)=0.96, p=0.34

LOCAL EFFICIENCY

Left Hemisphere

Medial Orbitofrontal Cortex 0.23±0.06 0.19±0.04 t(41)=−2.7, p=0.01

    Transverse Temporal Cortex 0.12±0.09 0.05±0.04 t(41)=−3.2, p=0.003

Right Hemisphere

Rostral Anterior Cingulate Cortex 0.19±0.05 0.15±0.05 t(41)=−2.8, p=0.008

Superior Frontal Cortex 0.23±0.03 0.19±0.04 t(41)=−3.1, p=0.003

Note: Reported values for the global network properties Gamma and Lambda were normalized against randomly generated networks with the same 
number of nodes (brain regions) and edges (connections).
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