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Abstract While attention-deficit/hyperactivity disorder

(ADHD) and bipolar disorder (BD) denote distinct psy-

chiatric conditions, diagnostic delineation is impeded by

considerable symptomatic overlap. Direct comparisons

across ADHD and BD on neurophysiological measures are

limited. They could inform us on impairments that are

specific to or shared between the disorders and, therefore,

potential biomarkers that may aid in the identification of

the diagnostic boundaries. Our aim was to test whether

quantitative EEG (QEEG) identifies differences or

similarities between women with ADHD and women with

BD during resting-state and task conditions. QEEG activity

was directly compared between 20 ADHD, 20 BD and 20

control women during an eyes-open resting-state condition

(EO) and a cued continuous performance task (CPT-OX).

Both ADHD (t38 = 2.50, p = 0.017) and BD (t38 = 2.54,

p = 0.018) participants showed higher absolute theta

power during EO than controls. No significant differences

emerged between the two clinical groups. While control

participants showed a task-related increase in absolute

theta power from EO to CPT-OX (t19 = -3.77,

p = 0.001), no such change in absolute theta power was

observed in the ADHD (t19 = -0.605, p = 0.553) or BD

(t19 = 1.82, p = 0.084) groups. Our results provide evi-

dence for commonalities in brain dysfunction between

ADHD and BD. Absolute theta power may play a role as a

marker of neurobiological processes in both disorders.

Keywords ADHD � Bipolar disorder � Quantitative EEG �
Spectral power � Theta power

Introduction

Attention-deficit/hyperactivity disorder (ADHD) and

bipolar disorder (BD) are common psychiatric disorders,

respectively affecting around 2–4 % and 1–2 % of the

adult population worldwide (Merikangas et al. 2011;

Willcutt 2012). While ADHD and BD denote distinct

psychiatric conditions (American Psychiatric Association

2013), diagnostic delineation is impeded by considerable

symptomatic overlap. Both ADHD and the manic phase of

BD are associated with distractibility, restlessness,

talkativeness and lack of social inhibition (Kent and

Craddock 2003; Galanter and Leibenluft 2008). Both
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disorders further present with features of mood dysregu-

lation, such as irritability and emotional lability (Skirrow

et al. 2012, 2014). However, ADHD symptoms are chronic

and trait-like, while BD symptoms tend to occur for dis-

tinct periods of time (Asherson et al. 2014). Nevertheless,

symptoms of distractibility and mood dysregulation (Najt

et al. 2007; Peluso et al. 2007; Newman and Meyer 2014),

as well as residual cognitive and functional impairments

(Torres et al. 2007; Henry et al. 2013), persist as milder

stable traits in euthymic BD. Such overlap can lead to

challenges in distinguishing the two disorders, or recog-

nising comorbidity, in clinical practice and may conse-

quently result in inappropriate treatment decisions

(Asherson et al. 2014).

Similar cognitive impairments have also been described

for individuals with ADHD and BD. Both ADHD and

euthymic BD are associated with poor accuracy in atten-

tional and inhibitory processing tasks (Robinson and Fer-

rier 2006; Arts et al. 2008; McLoughlin et al. 2010;

Torralva et al. 2011), as well as increased reaction time

variability (RTV) (Brotman et al. 2009; Kuntsi et al. 2010;

Kuntsi and Klein 2012; Adleman et al. 2014). Yet, similar

cognitive performance could stem from differing underly-

ing mechanisms (Banaschewski and Brandeis 2007).

Consequently, our recent cognitive-electrophysiological

investigations of attentional and inhibitory processing in

women with ADHD and women with BD revealed evi-

dence for disorder-specific impairments, despite indistin-

guishable cognitive performance (Michelini et al. 2016).

Event-related potential (ERP) analyses showed a signifi-

cantly reduced N2 amplitude in participants with BD,

compared to the ADHD and control groups, in response to

NoGo stimuli during a cued continuous performance task

(CPT) (Michelini et al. 2016). As the N2 in response to

NoGo stimuli or in incongruent trials is considered to

reflect conflict-monitoring processing (Yeung and Cohen

2006), the results suggest impaired conflict monitoring in

women with BD, compared to women with ADHD and

control women. Yet, women with ADHD and women with

BD also showed overlapping neurophysiological impair-

ments compared to controls in the NoGo-P3, suggesting

shared inhibitory control deficits (Michelini et al. 2016).

Another method to investigate covert processing and

other underlying mechanisms in the absence of overt per-

formance differences is employing quantitative electroen-

cephalography (QEEG). QEEG allows the direct

examination of subtle changes in cortical activity which

may reflect state regulation and arousal (Banaschewski and

Brandeis 2007). This is of particular relevance in condi-

tions such as ADHD and BD which show abnormalities in

state regulation and arousal (Degabriele and Lagopoulos

2009; Ongür et al. 2010; Cortese et al. 2012; Nigg 2013). In

QEEG, electrophysiological recordings are quantified in

the frequency ranges delta (0.5–3.5 Hz), theta

(3.5–7.5 Hz), alpha (7.5–12.5 Hz), beta (12.5–30 HZ) and

gamma ([30 Hz). The most consistently reported findings

of QEEG studies in children and adults with ADHD during

resting-state conditions are elevated power in slow (delta

and theta) frequency bands, reduced power in fast wave

cortical activity (mainly beta) and an elevated proportion of

slower to faster frequencies in the brain, as reflected in

theta/beta ratio (TBR), particularly apparent at fronto-

central sites (Bresnahan et al. 1999; Bresnahan and Barry

2002; Clarke et al. 2003, 2006; Snyder and Hall 2006;

Clarke et al. 2008; Koehler et al. 2009; Cooper et al. 2014).

This has also been confirmed by meta-analyses, reporting

effect sizes between 0.58 and 1.31 for theta power and

between 0.62 and 3.08 for TBR (Boutros et al. 2005;

Snyder and Hall 2006; Arns et al. 2013). Yet, several recent

studies have failed to replicate these findings (Loo et al.

2009; Ogrim et al. 2012; Liechti et al. 2013; Buyck and

Wiersema 2014; Poil et al. 2014; Kitsune et al. 2015;

Skirrow et al. 2015) and the increased TBR as a marker of

ADHD diagnosis is being contested (Arns et al. 2013;

Lenartowicz and Loo 2014; Jeste et al. 2015; Arns et al.

2016). EEG spectral power in ADHD further seems to

depend on the context, with one study finding elevated

delta and theta activity in individuals with ADHD com-

pared to controls during the resting-state condition at the

start of recording sessions and increased beta power only at

the end of the recording session in ADHD (Kitsune et al.

2015). In BD, elevated delta and theta power, as well as

decreases in alpha power, during resting-state conditions

have been reported (Clementz et al. 1994; Degabriele and

Lagopoulos 2009; Başar et al. 2012). However, direct EEG

comparison studies between ADHD and BD have not yet

been conducted.

Few studies on ADHD have examined cortical activity

patterns during cognitive task conditions and findings are

inconsistent. While some studies have shown no differ-

ences in cortical activation between controls and individ-

uals with ADHD during a CPT (Loo et al. 2009; Skirrow

et al. 2015), others have reported elevated alpha (Swart-

wood et al. 2003; Nazari et al. 2011) and theta (El-Sayed

et al. 2002) power in individuals with ADHD compared to

controls. In addition, lower theta power in adults with

ADHD has been demonstrated in the sustained attention to

response task (SART), owing to task-related increase in

frontal theta activity in control participants that was absent

in participants with ADHD (Skirrow et al. 2015). Treat-

ment with methylphenidate resulted in normalisation of the

resting-state to task activation pattern. These findings may

indicate a lack of modulation of cortical activity from

resting-state to cognitive task in the ADHD group com-

pared to controls. QEEG profiles of individuals with BD

during cognitive tasks have not yet been studied.
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Investigating the oscillatory patters of individuals with

ADHD and BD across conditions, from rest to cognitive

task condition, may allow us to investigate cortical acti-

vation and arousal patterns that could inform us on

impairments that are specific to or shared between the

disorders.

The aim of this study was to test whether quantitative

EEG identifies differences or similarities between women

with ADHD, women with bipolar disorder and controls

during a resting-state condition (eyes open) and an active

task condition (a flanked continuous performance test),

which could inform us on overlapping and distinct elec-

trophysiological impairments in both disorders that may

underlie symptomatic and cognitive similarities.

Method

Sample

The sample consisted of 20 women with ADHD, 20

women with euthymic BD and 20 control women. Partic-

ipants with ADHD were recruited from the Adult ADHD

Clinic at the Maudsley Hospital, London, UK. Participants

with BD were recruited from the Maudsley Psychosis

Clinic, London, UK, or had previously participated in

another research study (Hosang et al. 2012). Control par-

ticipants were recruited from the Mindsearch volunteer

database maintained by the Institute of Psychiatry, Psy-

chology and Neuroscience, King’s College London, UK,

which comprises several thousand potential participants.

Participants for this study were randomly selected from all

those meeting inclusion criteria.

Diagnosis in the clinical groups was first assessed with

the help of medical records, following Diagnostic and

Statistical Manual (DSM-IV) criteria (American Psychi-

atric Association 2000) and later confirmed during the

research assessment using the Diagnostic Interview for

Adult ADHD (DIVA, Kooij and Francken 2007), the Alt-

man Self-Rating Mania Scale (Altman et al. 1997), the

Becks Depression Inventory (Beck et al. 1996), as well as

the Young Mania Rating Scale (Young et al. 1978). The

ADHD participants met current criteria for combined-type

ADHD or inattentive-type ADHD with sufficient symp-

toms of hyperactivity-impulsivity in the past to meet a

childhood combined-type diagnosis. Participants in the BD

group had a diagnosis of bipolar I disorder (BD-I), with

evidence of a past manic episode lasting 1 week or more.

BD-I patients were selected if they were currently euthy-

mic, meaning that they were not experiencing a manic or

depressed episode at the time of the assessment. Exclusion

criteria for all groups were drug or alcohol dependency in

the last 6 months, autism, epilepsy, neurological disorders,

brain injury, past ECT treatment, current involvement in

another research trial likely to alter symptom severity,

pregnancy or a limited proficiency in English language.

Those with a comorbidity of both ADHD and BD, or who

were currently experiencing a manic episode, were also

excluded. In addition, control participants, who reported a

history of psychiatric disorders or who were taking psy-

chiatric medication, were excluded from the study.

All participants had normal or corrected-to-normal

vision. Participants’ IQs were assessed with the Wechsler

Abbreviated Scale of Intelligence–Fourth Edition (WASI-

IV; Wechsler 1999). IQ (F2,58 = 1.37, p = 0.26) and age

(F2,59 = 1.63, p = 0.21), which ranged from 20 to

52 years, did not differ between groups (Table 1). Partic-

ipants with ADHD were asked to come off stimulant

medication 48 h before the assessment. For ethical reasons,

participants were not asked to stop taking mood stabilisers

(70 % of the BD group), anti-psychotic medication (40 %

of the BD group) or anti-depressants (7 % of the ADHD

group and 25 % of the BD group) they had been pre-

scribed. All participants were asked to refrain from caf-

feinated drinks and nicotine 2 h prior to the testing session.

The investigation was carried out in accordance with the

latest version of the Declaration of Helsinki. Ethical

approval for the study was granted by the Camberwell St

Giles Research Ethics Committee (approval number

11/LO/0438) and all participants provided after the nature

of the procedures had been fully explained.

Procedure and Cognitive-Performance Measures

Participants completed the cognitive-EEG assessment,

including an IQ test and clinical interviews, in a single

4.5 h research session. Participants completed a 3-minute

eyes-open resting-state condition (EO) as well as a

3-minutes eyes-closed (EC) resting-state condition prior to

performing on a CPT with flankers (CPT-OX)

(McLoughlin et al. 2010; Doehnert et al. 2010;

McLoughlin et al. 2011). QEEG differences between EO

and CPT-OX are analysed here, in line with recent research

(Nazari et al. 2011; Skirrow et al. 2015), since EO has been

suggested to provide a more appropriate baseline than EC

for tasks involving visual processing (Barry et al. 2007).

The CPT-OX is a cued-Go/NoGo task that probes

attention, preparation and response inhibition. The task

consisted of 400 black letter arrays, made up of a centre

Table 1 Demographic data: mean (SD) and p-value from ANOVA

ADHD BD Controls p-value

Age (years) 37.4 (7.6) 40.3 (7.7) 36.7 (4.3) 0.21

IQ 104.5 (17.9) 108.0 (12.5) 112.4 (14.2) 0.26

858 Brain Topogr (2016) 29:856–866
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letter and incompatible flankers on each side to increase

difficulty for adults. The presented arrays included the cue

letter ‘O’, the target letter ‘X’ as well as the distractors ‘H’,

‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘J’ and ‘L’. Letters were pre-

sented centrally on the computer monitor, subtending

approximately 5�. Cue and target letters (‘O’ and ‘X’

respectively) were flanked by the incompatible letters

(‘XOX’ and ‘OXO’ respectively). Participants were

instructed to ignore the flanking letters and respond as

quickly as possible to cue-target sequences (‘O’-‘X’). 80

Cues (‘XOX’) were followed by the target (‘OXO’) in 40

trials (Go condition), and by neutral distractors in the

remainder of trials (NoGo condition). On 40 trials, the

target letter ‘X’ was not preceded by a cue ‘O’ and had to

be ignored. Letters were presented every 1.65 s for 150 ms

in a pseudo-randomised order. Ten practice trials preceded

the main task and were repeated, if required, to ensure

participant comprehension. Participants were instructed to

respond only to Cue-Go sequences by pressing a button as

quickly as possible with the index finger of their preferred

hand. Participants were further asked to withhold the

response in the presence of a NoGo stimulus, in the pres-

ence of a Go stimulus not preceded by a Cue, or in the

presence of any other irrelevant letters. Task duration was

11 min.

Electrophysiological Recording and Analysis

The EEG was recorded from a 62 channel direct-current-

coupled recording system (extended 10–20 montage),

using a 500 Hz sampling-rate and impedances under

10 kX. FCz and AFz were the recording reference and

ground electrodes, respectively. The electro-oculograms

were recorded from electrodes above and below the left eye

and at the outer canthi. Participants were seated on a

height-adjustable chair in a dimly lit video-monitored

testing cubicle. Stimuli were presented on a computer

monitor at a distance of approximately 120 cm, using the

Presentation software package (www.neurobs.com). EEG

data were analysed using Brain Vision Analyzer 2.0 (Brain

Products, Germany). Researchers were blind to group sta-

tus during EEG pre-processing and analysis. Raw EEG

recordings were down-sampled to 256 Hz, re-referenced to

the average of all electrodes, and digitally filtered using

Butterworth band-pass filters (0.1–30 Hz, 24 dB/oct). All

trials were also visually inspected for electrical artefacts

(due to electrical noise in the EEG recording) or obvious

movement, and sections of data containing artefacts were

removed manually. Ocular artefacts, corresponding to

blink-related and vertical and horizontal eye movements,

were identified using the infomax independent component

analysis (ICA) algorithm (Jung et al. 2000) in segmented

data. The ICA algorithm (Jung et al. 2000) allows for

removal of activity associated with ocular artefacts by

back-projection of all but this activity. The mean number

(and standard deviation) of independent components

removed in the ADHD, BD and control groups respectively

were 3.55 (1.23), 3.65 (1.81) and 3.20 (1.40) during EO;

and 2.35 (0.67), 2.50 (0.76) and 2.45 (2.05) during CPT-

OX. Sections of data with remaining artefacts exceed-

ing ± 100 lV in any channel or with a voltage step greater

than 50 lV were automatically rejected.

Quantitative EEG was investigated for EO and CPT-

OX. Artefact-free data were segmented into 2-second

epochs and power spectra were computed using a Fast

Fourier Transform (FFT) with a 10 % Hanning window.

The mean duration (and standard deviation) of the seg-

mented data in the ADHD, BD and control groups

respectively were 2.90 min (0.22), 2.93 min (0.23) and

2.95 (0.20) during EO; and 7.91 min (1.65), 8.41 min

(1.51) and 8.30 min (1.10) during CPT-OX. In order to

examine specific aspects of stimulus–response processing,

CPT-OX data were also segmented into stimulus-locked

epochs (stimulus window from 0 to 1400 ms) based on

three different response conditions: Cue, Go and NoGo.

Only trials with correct responses (Go) or correctly rejected

trials (NoGo and Cue), and which contained at least 20

artefact-free segments, were included.

Analyses focused on absolute delta (0.5–3.5 Hz), theta

(3.5–7.5 Hz), alpha (7.5–12.5 Hz), beta 1 (12.5–18.5 Hz)

and beta 2 (18.5–30 Hz) frequency band differences, as

well as differences in theta/beta ratio (TBR), between

ADHD, BD and control groups. All data were natural-log

transformed (ln) to normalise the data. The normal distri-

bution of log-transformed data was confirmed using a

Shapiro–Wilk test. In line with previous studies (Loo et al.

2009; Skirrow et al. 2015), absolute EEG power (lV2)

within each frequency band was averaged across frontal

(Fz, F1, F2, F3, F4, F5, F6, F7, F8), central (Cz, C1, C2,

C3, C4, C5, C6) and parietal (Pz, P3, P4, P7, P8) regions

from individual scalp electrodes to reduce the number of

statistical comparisons (see Fig. 1 for topographic maps

showing scalp-recorded power density in delta, theta,

alpha, beta 1 and beta 2 bands). Results for relative EEG

power (lV2) within each frequency band can be found in

the supplementary material (S1).

Statistical Analysis

A repeated-measures analysis of variance (ANOVA),

applying a Greenhouse-Geiser correction when appropri-

ate, was carried out to investigate diagnostic status-related

differences between ADHD, BD and controls in EEG

power. Recording condition (EO, CPT-OX) and recording

site (frontal, central, parietal) were used as within-subject

variables and diagnostic status (ADHD, BD, control) as a

Brain Topogr (2016) 29:856–866 859
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between-subjects variable. Delta, theta, alpha, beta 1 and

beta 2 power were each investigated with a 2 9 3 9 3

repeated measures ANOVA. Post-hoc analyses were car-

ried out using independent samples t tests for between-

subjects contrasts, and paired samples t tests for within-

individual task related differences in EEG power. Effect

sizes (Cohen’s d), which were calculated using the differ-

ence in the means divided by the pooled standard deviation

(Cohen 1988), are reported. According to Cohen (1988),

d = 0.20 constitutes a small effect, d = 0.50 a medium

effect and d = 0.80 a large effect.

Results

Absolute EEG Power

The repeated-measure ANOVA indicated no significant

main effects of group for absolute delta (F2,57 = 1.29,

p = 0.283), theta (F2,57 = 1.70, p = 0.193), alpha

(F2,57 = 1.20, p = 0.312), beta 1 (F2,57 = 0.51,

p = 0.602) and beta 2 (F2,57 = 0.29, p = 0.747) power.

Significant main effects of recording site were identified

for absolute delta (F1,57 = 684.90, p\ 0.001; Greenhouse-

Geisser e = 0.615), theta (F1,57 = 140.43, p\ 0.001;

Greenhouse-Geisser e = 0.871), alpha (F1,57 = 232.83,

p\ 0.001; Greenhouse-Geisser e = 0.858), beta 1

(F1,57 = 89.63, p\ 0.001; Greenhouse-Geisser e = 0.802)

and beta 2 (F1,57 = 5.81, p = 0.008; Greenhouse-Geisser

e = 0.776) power.

There were significant main effects of testing condition

for absolute delta (F1,57 = 170.87, p\ 0.01), beta 1

(F1,57 = 39.30, p\ 0.01) and beta 2 (F1,57 = 19.79

p\ 0.01) power, but not for absolute theta (F1,57 = 2.09,

p = 0.154) and alpha (F1,57 = 3.83, p = 0.055) power.

No significant group-by-condition interaction emerged

for absolute delta (F1,57 = 2.98, p = 0.059), alpha (F1,57 =

1.87, p = 0.163), beta 1 (F1,57 = 0.32, p = 0.728) or beta

2 (F1,57 = 0.99, p = 0.377) power. Consequently, the

results for these frequency bands are not reported further.

A significant group-by-condition interaction, with a

moderate effect size, emerged for absolute theta power

(F1,57 = 3.39, p = 0.041, g2 = 0.106). Post-hoc tests

revealed significantly higher absolute theta power in the

ADHD group compared to controls during the resting-state

condition (t38 = 2.45, p = 0.019), with moderate-to-large

effect size (d = 0.77), but not during CPT-OX (t38 = 0.07,

p = 0.943, d = 0.02), as well as significantly higher

absolute theta power in the BD group compared to controls

during the resting-state condition (t38 = 2.39, p = 0.022),

with moderate-to-large effect size (d = 0.76), but not

during CPT-OX (t38 = 0.80, p = 0.428, d = 0.25). Post-
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Fig. 1 Topographic maps showing scalp recorded power density in absolute delta, theta, alpha, beta 1 and beta 2 bands for resting-state (EO)

and CPT-OX conditions
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hoc tests showed no significant differences in absolute

theta power between the ADHD and BD groups during the

resting-state condition (t38 = 0.21, p = 0.837, d = 0.07)

or during CPT-OX (t38 = 0.59, p = 0.561, d = 0.19).

While control participants showed a task-related increase

in absolute theta power (t19 = 3.34, p = 0.003), no sig-

nificant changes in absolute theta power from EO to CPT-

OX were observed in the ADHD (t19 = -1.23, p = 0.235)

or BD (t19 = -1.50, p = 0.150) groups (Fig. 2). This

change in absolute theta power in the control participants

likely drives the significant group-by-condition interaction.

When CPT-OX was segmented based on stimulus-

locked epochs (Cue, Go and NoGo), no significant group-

by-condition interaction emerged for absolute delta

(F1,57 = 2.81, p = 0.061, Greenhouse-Geisser e = 0.500),

alpha (F1,57 = 2.18, p = 0.114, Greenhouse-Geisser

e = 0.383), beta 1 (F1,57 = 2.68, p = 0.068, Greenhouse-

Geisser e = 0.390) or beta 2 (F1,57 = 2.43, p = 0.078,

Greenhouse-Geisser e = 0.384) power. A significant

group-by-condition interaction, with a moderate effect size,

emerged for absolute theta power (F1,57 = 3.21,

p = 0.019, g2 = 0.101, Greenhouse-Geisser e = 0.598)

when CPT-OX was segmented based on stimulus-locked

epochs (Cue, Go and NoGo).

Post-hoc tests revealed significantly higher absolute

theta power in the ADHD group, compared to controls,

during the resting-state condition (t38 = 2.50, p = 0.017,

d = 0.77), but not during the Cue (t38 = -1.01,

p = 0.317), Go (t38 = -1.05, p = 0.302) and NoGo

(t38 = -0.82, p = 0.417) conditions. Post-hoc tests also

demonstrated significantly higher absolute theta power in

the BD group compared to controls during the resting-state

condition (t38 = 2.54, p = 0.016, d = 0.76), but not dur-

ing the Cue (t38 = 0.07, p = 0.948), Go (t38 = 0.47,

p = 0.640) and NoGo (t38 = 0.24, p = 0.813) conditions.

No significant differences in absolute theta power emerged

between the ADHD and BD groups during the resting-state

condition (t38 = 0.32, p = 0.748), Cue (t38 = -1.01,

p = 0.318), Go (t38 = -1.42, p = 0.164) or NoGo

(t38 = -1.00, p = 0.323) conditions.

Theta/Beta Ratio (TBR)

No significant main effect of group (F1,57 = 1.86,

p = 0.165), condition (F1,57 = 1.44, p = 0.706) or site

(F1,57 = 1.43, p = 0.240) and no significant group-by-

condition interaction emerged for TBR (F1,57 = 0.70,

p = 0.503).

Discussion

In this study investigating the relationship of EEG indices

of cortical activity in women with ADHD, women with BD

and control women, both ADHD and BD participants

showed higher absolute theta power than controls during

the resting-state condition. No significant differences

emerged between the two clinical groups. While control

participants showed a task-related increase in absolute

theta activity from resting-state to cognitive task, no
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significant changes in absolute theta power were observed

in the ADHD or BD groups. Our results provide evidence

for commonalities in brain dysfunction between ADHD

and BD. Absolute theta power may act as a marker of

neurobiological processes in both disorders.

Both the ADHD and BD groups showed an elevation of

absolute theta power during the resting-state condition,

compared to controls. To date, no study has directly

compared the cortical activity patterns of individuals with

ADHD and BD. This finding suggests commonalities in

oscillation patters between women with ADHD and BD.

The lack of significant differences between the clinical

groups adds to previous research, which has shown an

elevation of theta power during resting-state conditions

independently in individuals with ADHD (Bresnahan et al.

1999; Bresnahan and Barry 2002; Clarke et al. 2003, 2006;

Snyder and Hall 2006; Clarke et al. 2008; Koehler et al.

2009) and in individuals with BD (Degabriele and Lago-

poulos 2009), compared to controls. It is not fully under-

stood what increased theta power in individuals with

ADHD and BD during resting-state conditions represents.

The findings of elevated resting theta power in younger

compared to older neurotypical children (Benninger et al.

1984; Gasser et al. 1988a, 1988b) led to the development of

a maturational-lag hypothesis (Kinsbourne 1973). This

hypothesis holds that that there is a delay in central nervous

system (CNS) development in individuals with ADHD

because during neurotypical CNS maturation slow wave

activity is replaced with fast wave activity. Yet, our and

other research demonstrating elevated theta power in ado-

lescents and adults with ADHD (Bresnahan et al. 1999;

Bresnahan and Barry 2002; Clarke et al. 2008; Koehler

et al. 2009; Kitsune et al. 2015; Skirrow et al. 2015) and

BD (Degabriele and Lagopoulos 2009) do not support this

hypothesis. Increased theta power in individuals with

ADHD during resting-state conditions has also been

interpreted as representing hypo-arousal (Satterfield and

Dawson 1971; Lubar 1991). Yet, two studies investigating

the relationship between resting EEG power and skin

conductance level (a traditional marker of CNS arousal) in

children with and without ADHD linked increased alpha

rather than theta to under-arousal as indexed by skin con-

ductance level (Barry et al. 2004, 2009). While the sig-

nificance of increased theta power during resting-state

conditions remains to be fully elucidated, our findings may

suggest a role for absolute theta power as a common

marker of neurobiological processes in both ADHD and

BD. This is in line with findings from quantitative genetics

studies, which have found strong phenotypic and genetic

links between ADHD and abnormal theta activity, sug-

gesting it may be a biological marker or intermediate

phenotype (endophenotype) for ADHD (McLoughlin et al.

2014; Tye et al. 2014).

In addition, no differences in EEG power were observed

between the three groups during the cognitive task condi-

tion, even when specific aspects of stimulus and response

processing were investigated separately, and no change in

absolute theta power from resting-state to task condition in

the clinical groups was found. Our study is the first to

investigate the QEEG profile of individuals with BD during

a cognitive task and to directly compare it to an ADHD

group. The findings, therefore, suggest commonalities in

brain dysfunction between ADHD and BD during this

cognitive task. Furthermore, this study is the first to

investigate the EEG patterns during both rest and task

condition in women with adult ADHD. The results support

our previous work in an all-male sample, which showed no

differences in cortical activation between controls and

individuals with ADHD during the CPT and no change in

spectral power from resting-state to cognitive task (Skirrow

et al. 2015); although, previous QEEG studies have yielded

inconsistent results such as elevated alpha (Swartwood

et al. 2003; Nazari et al. 2011) and theta (El-Sayed et al.

2002) power on switching to CPT from resting-state in

individuals with ADHD compared to controls. The seem-

ing lack of task-dependent modulation of absolute theta

power in ADHD and BD participants may potentially be

explained by abnormalities in the default mode network

(DMN), which is typically activated during resting-state

conditions and deactivated during task performance (Broyd

et al. 2009; Raichle 2010). Abnormalities in the DMN

during rest have been demonstrated for both ADHD and

BD (Ongür et al. 2010; Cortese et al. 2012). Yet, while

task-related modulation remains to be examined in BD, the

DMN has been found to be inadequately attenuated when

individuals with ADHD perform a task (Sonuga-Barke and

Castellanos 2007; Fassbender et al. 2009; Cortese et al.

2012). The absence of task-related changes in absolute

theta power in our sample of women with ADHD and BD,

as well as in previous research on ADHD (Skirrow et al.

2015), might therefore indicate inadequate attenuation of

the DMN. A recent review, summarising findings from

studies employing functional magnetic resonance imaging

and EEG simultaneously, provides support for this idea

(Nishida et al. 2015), by concluding that increased theta

power indexes decreased DMN activity. Consequently,

theta power may be vital to the attenuating processes

required for cognitive functioning.

Unlike previous research, this study did not find elevated

delta power in individuals with BD (Degabriele and

Lagopoulos 2009) or decreased beta activity and an

increased theta/beta ratio in individuals with ADHD

(Bresnahan et al. 1999; Bresnahan and Barry 2002; Clarke

et al. 2008; Koehler et al. 2009). These discrepancies may

be due to age and gender effects. Our all-female sample

had a mean age of 38 years and an age range of

862 Brain Topogr (2016) 29:856–866
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20–52 years. As EEG power tends to decline with age

(Lüchinger et al. 2011; Michels et al. 2013; Poil et al.

2014), this wide age range may have reduced power to

detect differences of smaller effect between the groups.

Yet, some recent studies have also failed to replicate pre-

vious findings of decreased beta power and an increased

theta/beta ratio in individuals with ADHD (Loo et al. 2009;

Ogrim et al. 2012; Liechti et al. 2013; Buyck and Wier-

sema 2014; Poil et al. 2014; Skirrow et al. 2015) and the

importance of an increased TBR as a marker of ADHD is

being contested (Arns et al. 2013; Lenartowicz and Loo

2014; Jeste et al. 2015; Arns et al. 2016). A recent meta-

analysis demonstrated that the reported effect size for TBR

abnormalities in ADHD showed a strong relationship with

year of publication, declining over time (Arns et al. 2013).

The paper proposes the trend for reduced sleep duration in

children across time, as well as sample and testing context

differences between studies as possible explanations.

Support for context effects comes from a study of resting-

state EEG power differences between recordings made at

the beginning and the end of a 1.5 h testing session in 76

adolescents and young adults with ADHD and 85 controls,

which showed elevated delta and theta power in the ADHD

group in the beginning and elevated beta power in the

ADHD group at the end of the testing session (Kitsune

et al. 2015).

Several limitations should be considered alongside these

results. Firstly, while participants were asked to come off

stimulant medication 48 h before the assessment, partici-

pants were not asked to discontinue mood-stabilising, anti-

psychotic or anti-depressant medication for ethical reasons.

Although the understanding of the effects of medications

on QEEG is still limited, no significant differences between

medicated and unmedicated individuals with euthymic BD

on QEEG have been found (El-Badri et al. 2001; Degab-

riele and Lagopoulos 2009). It is, therefore, unlikely that

the results in this study were produced by medication

effects. Secondly, this investigation was conducted in a

homogenous all-female sample. Our results support previ-

ous work in an all-male sample, which showed no differ-

ences in cortical activation between controls and

individuals with ADHD during the CPT and no change in

spectral power from EO to CPT (Skirrow et al. 2015).

Nevertheless, future studies are needed to replicate these

findings in more typical adult ADHD and BD populations

with approximately equal distribution of males and females

(Biederman et al. 2004; Ayuso-Mateos 2006; Rucklidge

2010). Finally, two experimental conditions with different

durations (3 min in EO and 11 min in CPT-OX) were

compared in this study. It is possible that these discrepant

experimental timings might have affected the result. Yet,

segmenting the CPT-OX based on stimulus-locked epochs

(Cue, Go and NoGo) resulted in similar findings,

suggesting that the duration of the two experimental con-

ditions is unlikely to have an impact on the results.

Our results provide evidence for commonalities in brain

dysfunction between ADHD and BD, with absolute theta

power potentially playing a role as a marker of shared

neurobiological processes in both disorders. In light of

shared cognitive impairments and the overlapping symp-

tomatology of ADHD and BD, these findings represent a

move towards uncovering biological markers underlying

the pathophysiology shared between the disorders. Cur-

rently, diagnostic manuals such as the DSM (American

Psychiatric Association 2000, 2013) outline clinical diag-

noses in a categorical system based on the description of

behavioural symptoms. Yet, research has revealed sub-

stantial evidence for pathophysiological heterogeneity

within disorders (Sjöwall et al. 2013; Burdick et al. 2015;

Jeste et al. 2015), as well as pathogenic overlap between

disorders (Lee et al. 2013; Michelini et al. 2016). Conse-

quently, diagnostic boundaries based on behavioural

symptoms do not seem to correspond seamlessly to find-

ings from neuropsychological and genetic studies, and have

been only moderately successful at predicting treatment

outcome (Insel et al. 2010; Retz and Retz-Junginger 2014;

Ostacher et al. 2015). Future studies should build on the

results from this and similar studies to understand the

relationship between behaviour, neurophysiology and the

genome to identify syndromes based on pathophysiology.

This could lead to more objective and precise approaches

to diagnosis and prognosis and may eventually result in

improved interventions and long-term outcome (Casey

et al. 2014).
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