MalLo: A Distributed, Synchronized Instrument
for Internet Music Performance

Zeyu Jin* Reid Oda* Adam Finkelstein
Department of Computer Department of Computer Department of Computer
Science Science Science

Princeton University
zjin@cs.princeton.edu

Princeton University
roda@cs.princeton.edu

Rebecca Fiebrink
Department of Computing
Goldsmiths, University of

London
r.fiebrink@gold.ac.uk

Princeton University
af@cs.princeton.edu

ABSTRACT

The Internet holds a lot of potential as a music listening,
collaboration, and performance space. It has become com-
monplace to stream music and video of musical performance
over the web. However, the goal of playing rhythmically
synchronized music over long distances has remained elu-
sive due to the latency inherent in networked communica-
tion. The farther apart two artists are from one another, the
greater the delay. Furthermore, latency times can change
abruptly with no warning.

In this paper, we demonstrate that it is possible to cre-
ate a distributed, synchronized musical instrument that al-
lows performers to play together over long distances, despite
latency. We describe one such instrument, Mall.o, which
combats latency by predicting a musician’s action before it
is completed. MalL.o sends information about a predicted
musical note over the Internet before it is played, and syn-
thesizes this note at a collaborator’s location at nearly the
same moment it is played by the performer. MalLo also pro-
tects against latency spikes by sending the prediction data
across multiple network paths, with the intention of routing
around latency.

Author Keywords

Networked Performance, Novel Musical Interface, Object
Tracking, Network Latency Reduction

1. INTRODUCTION

Just as the Internet has come to mediate so many other
aspects of our culture, it also offers huge potential as a
shared musical performance space. It affords new oppor-
tunities like discovering collaborators among a worldwide
community of musicians, holding impromptu improvisation
sessions, and playing with others who share similar artis-
tic goals and vision. Unfortunately, this potential remains
largely unrealized because communication latency inhibits

*These authors contributed equally.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’15, May 31-June 3, 2015, Louisiana State Univ., Baton Rouge, LA.
Copyright remains with the author(s).

rhythmic synchronization among remote performers using
traditional instruments.

Depending on musical context, latency greater than some
threshold causes tempo drag: each musician repeatedly slows
down in response to apparent delay from their remote part-
ner [6, 7]. As latency increases it becomes increasingly diffi-
cult to stay on beat, until eventually the performance breaks
down. In practice, this means that artists have a limited
radius of collaboration, meaning they can only play with
artists who are within a certain distance (because network
latency roughly correlates with physical distance). Players
can adjust to a certain amount of lag, so if we assume that
people can tolerate 45 ms of latency [6, 7], it is possible
for artists in New York and San Francisco to play with one
another, but they will have to train themselves to ignore
the fact that the music is audibly out of sync, and be con-
scious of not slowing down. Furthermore, they will be at
the mercy of network traffic, where bursts of congestion are
the norm and cause unpredictable delays. This approach
has been the basis of many telematic performances played
in spite of lag [14]. Another approach to working with la-
tency has been to allow one side of the connection to lead
while the other follows [11]. However, these approaches do
not attempt to remove latency, and so they cannot truly
allow for distributed ensembles in which the audio is syn-
chronized among multiple locations. We envision a new
category of musical instrument that is specifically designed
to enable natural, latency-free collaborations between mu-
sicians. These instruments are distributed, in the sense that
they exist and generate audio in many locations, as well as
synchronized, in the sense that audio is generated and heard
in nearly the same moment in all locations. We demonstrate
in this paper that building such distributed, synchronized
musical instruments (DSMIs) is achievable, and we present
the implementation details of our approach alongside an
evaluation of its effectiveness.

The synchronization in a DSMI is accomplished by pre-
dicting a note before it is played. These note predictions
can then be transmitted over the network early enough that
they can be played remotely at the same time as they oc-
cur locally (Figure 1). DSMIs capitalize on the fact that
the musician no longer needs to manually excite a physical
instrument in order to generate sound. Instead, we can use
synthesis algorithms along with a sound system to generate
audio. This decoupling is essential, because it allows us to
begin the transmission process without waiting for sound
to be generated locally. Thus, when constructing a DSMI,
we seek to design an instrument with predictable properties

rather than particular acoustic properties. Two crucial as-
pects of predictability are the anticipation time (i.e., how
far in advance can it be made) and the prediction accuracy
(i.e., how different is the predicted time from the time of the
actual note event). Making predictions earlier in advance
can mask longer network delays (which generally correspond
to longer distances), and making more accurate predictions
allows more authentic collaboration.

In this paper, we present our DSMI named “MalLo” (short
for Mallet Locator), which combines prediction of a mu-
sician’s gesture with a network forwarding strategy in or-
der to support synchronization between distant performers.
We show that MalLo is capable of playing a note that is
nearly synchronized (within 30 ms) with an actual mallet
strike thousands of miles away. MalLo builds on the work of
Dahl [8] and Oda [13], who showed that the path of a per-
cussion mallet head is sufficiently predictable that a DSMI
could be built around it. The swing gesture of a mallet is
long (on the scale of 40-80 ms) and smooth. This smooth-
ness stems from the purpose of the gesture: to efficiently
build kinetic energy to convert into audio, via a vibrating
surface. We describe MalLo’s sensing and prediction mech-
anisms in Section 3.

MalLo sends predictions from one location to another us-
ing a multipath forwarding approach, similar to an over-
lay network [1]. This aspect of the instrument addresses
the problem that message latency on the Internet varies
based on network traffic. By sending duplicate messages
over many different network paths at once, MalL.o can avoid
moments of high latency that are associated with bursts
of Internet congestion. Figure 2 illustrates these servers,
placed in multiple strategic geographic location so as to cre-
ate diverse routes through the Internet. We show that our
method reduces peak latencies, thereby increasing overall
prediction accuracy and robustness.

2. RELATED WORK

There have been a number of musical instruments built
specifically for the Internet. In particular, Sarkar and Ver-
coe [16] built a predictive percussion instrument, which de-
termines which pattern a sending performer is playing, and
synthesizes it for the Receiver. Our system is inspired by
theirs, but ours plays the same musical content on each end
of the connection, while theirs might differ if the sender
plays any material not in the learned repertoire. Somewhat
similarly, Derbinsky uses reinforcement learning to allow the
computer to learn drum patterns from a human performer,
in order to act as a stand-in [9].

Barbosa provides an in-depth survey of Internet music
collaborative systems that outlines the challenges of play-
ing over the Internet, and it discusses previous uses of note
messages as a means of communicating between distributed
ensemble members [2] . Other works explore using the net-

2. "X SEIGEISETD

Gesture Sense Predict Se:nd Schedule Synthésize

Figure 1: An example of a distributed, synchronized
musical instrument (DSMI). The instrument is com-
posed of various parts that exist in different loca-
tions. It uses prediction in order to synthesize the
same audio in each location at the same moment. It
capitalizes on the predictable path of a percussion
mallet in order to accomplish this goal.

Forwarder 1

@nder

Forwarder 3 Forwarder 2

Figure 2: To reduce latency peaks, messages are
sent along multiple simultaneous paths by sending
both to the Receiver and to forwarding servers, in
an attempt to route around local network conges-
tion.

work itself as a resonant instrument [5, 4], while Tanaka
created a hybrid instrument that uses both the Internet and
physical space [18].

3. MALLO CONSTRUCTION

The key components of MalLo are (1) the sensing mecha-
nism, (2) the prediction algorithm, which determines how
the mallet path is interpreted by both the Sender and Re-
ceiver, and (3) the multipath forwarding network. The im-
plementation of each component is described here, and the
components are evaluated in Section 4.

We have built two versions of the MalLo sensing mech-
anism, one using a high-speed RGB camera and one using
the Leap Motion sensor (Figure 3). The high-speed RGB
version is more accurate and was used for all tests in Sec-
tion 4. The Leap Motion version was built as a proof of
concept, to show that it is possible to construct MalL.o with
inexpensive components.

3.1 High-Speed RGB Camera Version

The RGB camera version of MalLo has low latency and
tight timing synchronization. The host for this system is
a Linux host running Ubuntu 12.04, with a dual-core 2.40
GHz Core 2 Duo processor. The camera is a Point Grey
GRAS-03K2C-C FireWire 800 camera. It was chosen be-
cause it can isochronously transfer images with low latency
(6 ms) from the camera to computer. Furthermore, the 1394
bus clock allows us to estimate shutter times with high ac-
curacy (< 1 ms). It has a frame rate of 200 fps, a resolution
of 640 x 480 pixels (turned sideways), and a global shutter
to reduce motion blur. These specifications roughly meet

@::” T~ ="

\\ \ 1

High-speed RGB Camera Leap Motion Sensor
Figure 3: Two versions of MalLo. The high-speed
RBG version uses a 200 fps camera, OpenCV to
track the mallet head, and a MIDI drum pad to
collect timing ground truth. The Leap Motion ver-
sion version has no striking surface, and uses a yel-
low highlighter pen as a mallet. It is affordable and
portable, but it has lower accuracy and higher la-
tency.

: : : :
0.9
0.8

Lo7

Z06
=)

Future mallet samples

@05+ O Past mallet samples X i
E 0.4 O Samples used in prediction ®

4+ : f S 4
% Predicted trajectory Current time |
=031 | — — Currenttime 4

0.2} | — — Predicted strike time |

o1k Lo Actual strike time |

1 1 1 1 1 ‘ 1 1 1 1
32.95 33 33.05 33.1 33.15 33.2 33.25 33.3 33.35 33.4 33.45
Time (s)

il
il
gl
i
: | Predicted time
H
]
il
il

Figure 4: To predict the strike time of a mallet,
we fit a second-degree polynomial to the previous 7
mallet locations. We compute the zero crossing to
obtain the predicted time p; of the strike, and the
derivative of the polynomial at time p; to obtain the
velocity v;.

the minimum requirements for tracking percussion mallets
shown in [13]. Our striking surface is a Roland SPD11
MIDI percussion pad, which is used to collect timing ground
truth data for the experiments presented in Section 4.

The mallet head is tracked using OpenCV 2 libraries [3],
via the template matching algorithm [17]. This search al-
gorithm is the most computationally expensive operation in
our pipeline. A typical search time is 5-15 ms, bringing the
total processing time to 11-21 ms per frame.

3.2 Leap Motion Version

We built an inexpensive version that uses the Leap Motion
as input. The Leap Motion is a small, portable commer-
cial 3D sensor. It collects images using IR illumination and
multiple cameras at a rate of 200 fps, and it has a transfer
latency of 20 ms. The device ships with the ability to track
the tip of a stick, but the algorithm is proprietary. In gen-
eral, the Leap Motion delivered noisier data than the RGB
camera. A companion video! submitted with this paper
demonstrates the Leap Motion and RGB camera versions
of MallLo in action. From this point on in the paper, all
references to MalLo refer to the high-speed RGB version.

3.3 Prediction, Transmission, and Playback

We perform a new prediction for each new mallet height
hi (one per frame). If the mallet is descending, the Sender
fits a second degree polynomial (quadratic regression) to
the last k heights (7 in our tests) and solves for the zero
crossing, which is the predicted impact time, p;. The veloc-
ity v; at impact time is computed as the derivative of the
polynomial at p;, in pixels per second. This curve-fitting
approach is shown in Figure 4. Finally, p; and v; are sent
in a message to the Receiver via the multipath forwarding
network described in Section 3.4.

For each new message received, the Receiver determines
if the message is newer than the last message received, and
a user-specified inter-note wait time T),;, has passed; if so,
the message is processed. If it is an “unschedule” message,
then all events from that Sender are removed from the note
scheduling queue. This is a standard scheduling method for
realtime systems. If it is a prediction message, then a note
event is scheduled at time p; with velocity v;. When the
note is played, to is updated to p;. The Receiver continues
to replace older predictions with newer predictions until one
is finally played. In doing this the Receiver assumes that
prediction error monotonically decreases as the next strike
approaches. In practice we found this to be true; each new
prediction is almost always better than the previous.

"http://gfx.cs.princeton.edu/pubs/Jin_2015_MAD/

Error (s)

21ms 40ms 48ms 61ms 78ms 90ms
Latency (ms)

Figure 5: A pattern played at 120 bpm, with vary-
ing average network latency, accomplished by send-
ing note messages to various locations around the
world. Higher latencies created more variance in
prediction accuracy. At 78 ms latency 99.6% of pre-
dictions are within 30 ms of the ground truth.

3.4 Multipath Forwarding Strategy

Naively sending the note prediction packet directly from the
Sender to the Receiver over the Internet leaves our packet
at the mercy of temporary congestion that may lie in the
path chosen for it by the series of routers it encounters.
To reduce the risk of sudden, severe congestion delaying
receipt of the prediction, we have constructed a multipath
forwarding system that uses a series of servers throughout
the Internet, hosted on Amazon EC2 and other commer-
cial hosting companies. For each prediction to be sent, the
Sender sends one copy directly to the Receiver, as well as
one copy to each of the forwarding servers. They, in turn,
forward the message to the Receiver. In this manner, the
redundancy helps to route around congested areas of the
Internet. Ideally the servers should be located so that their
paths are different than the direct route, in an arrangement
similar to Figure 2.

4. EXPERIMENTS AND RESULTS

We have evaluated the effectiveness of the prediction and
multipath forwarding components of MalL.o using a series of
experiments over the Internet. Our first experiment inves-
tigates the timing accuracy of our prediction method under
different latency conditions. The second experiment inves-
tigates the accuracy of our note velocity predictions. Our
third examines the effectiveness of the multipath forwarding
strategy in reducing latency spikes arising from congestion.
Finally, we compare our current prediction system against
a previously proposed version [13].

4.1 Timing Accuracy

Our main goal is to show that prediction can allow a per-
former to play the same sound, synchronized, in multiple
locations, in spite of latency. Faster tempos and higher
latency make percussive strikes more difficult to accurately
predict, so we tested the system under different latency con-
ditions and at different playing tempos.

We recorded a musician playing a syncopated, repeating
pattern made up of quarter and eighth notes, at 60, 80, 100,
120, and 140 bpm for 20 seconds. The recordings resulted
in a sequence of tuples containing a mallet height and a
corresponding timestamp. We also used the MIDI drum
pad to collect the corresponding timing ground truth. Each
sequence has approximately 30 notes.

To test the accuracy of our note timing predictions under
different latency conditions, we used the height/timestamp
tuples to generate timing predictions that were each sent

to different servers around the world. Each server immedi-
ately redirected the message packets back to our lab, where
they were received by a Receiver process running on the
same computer as the Sender. (This allowed perfect clock
synchronization between Sender and Receiver for our tests.)
We consider the entire round trip time, to the server and
back, as the tested latency. There were 6 servers in total
corresponding with 20, 40, 47, 61, 73, and 88 ms of average
latency. In general the latencies were stable, varying by +/-
5 ms for each. However, at times we observed large momen-
tary spikes in latency. (See Section 4.3 for more information
about latency behavior.)

We compare the predicted note onset time with the tim-
ing of the ground truth. Based on Chafe’s analysis of the
musical consequences of different latencies between perform-
ers [6], we consider notes played by the Receiver within 30
ms of the ground truth as “ideal”, notes within 30-50 ms
of ground truth as “tolerable”, and those beyond 50 ms as
“missed”. Table 1 shows the percentage of notes that were
“ideal”. The table also includes false positives in the count
of “missed” notes. (False positives occur when the musi-
cian moves the mallet downwards but does not complete
the motion with a strike and the Receiver does not receive
an “unschedule” message in time.) Note that the system be-
gins to break down with 88 ms of Internet latency, dropping
6 out of every 100 notes at 120 bpm. However, at 73.0 ms,
the system accurately predicts 99.6% of all notes. 73 ms is
roughly the time it takes for a network packet to travel from
Berlin to Cairo, New York to Lima, Tel Aviv to Halifax, or
Tokyo to Los Angeles [15].

For a closer look at the behavior of MalLo, Figure 5 shows
the distributions of predictions as average latency is var-
ied (by using different servers), for a pattern played at 120
bpm. Note that as latency increases, so does the variance
of the predictions. Also note that for each average latency
level, the extreme predictions are never more than half the
amount of latency. As latency increases, the mean predic-
tion becomes later, and a noticeable protrusion begins to
form at the top of the distribution. This is due to the eighth
notes in the pattern occurring too quickly to be predicted
on time. However, although they are predicted late, they
still fall within the “tolerable” range.

BPM 60 80 100 120 140
Latency

20.0 ms 100.0 | 100.0 | 100.0 | 100.0 | 100.0
40.0 ms 100.0 | 100.0 | 100.0 | 100.0 | 100.0
47.0 ms 100.0 | 100.0 | 100.0 | 100.0 | 100.0
61.0 ms 100.0 | 100.0 | 100.0 | 100.0 | 100.0
73.0 ms 99.8 | 99.6 | 99.9 | 99.6 | 99.6
88.0 ms 100.0 | 100.0 | 97.9 | 94.7 | 94.7

Table 1: A pattern of eighth and sixteenth notes
was played back with various latencies and tempos.
Shown are the percentage of notes predicted within
30 ms of the ground truth. 30 ms is only barely
perceptible as non-synchronous.

Figure 6 shows the accuracy of predictions at a latency
of 77.5 ms at various tempos. We see the same behavior as
Figure 5, with higher tempos showing higher variance. This
is because higher tempos and higher latencies are roughly
equivalent as far as the algorithm is concerned. A faster
tempo means there is less time between notes. Higher la-
tency requires predictions to be made earlier in order to
send over the Internet in time. Both require that a pre-
diction be made earlier in the stroke of the mallet, and if

Error (s)

80

120

100
Tempo (beats per minute)

Figure 6: A pattern played at varying tempos, over
77.5 ms of average latency. Higher tempo causes
more variance, but in the worst case of 140 bpm,
99.8% of predictions are within 30 ms of ground
truth.

Velocity Error (dB)

20 30 40 60 70 80

50
Latency (ms)

Figure 7: The difference between ground truth and
predicted velocities (converted to probable sound
pressure level when striking a rigid body). Perfor-
mance is within an acceptable range up through 50
ms, but begins to degrade. At 80 ms, 5% of esti-
mates are at least 15 dB louder than ground truth.

the prediction is made too early (e.g. before the mallet has
descended long enough) there will not be enough data to
predict accurately.

4.2 Velocity Accuracy

To test velocity accuracy, we compare the predicted veloc-
ity of the mallet with the measured velocity of the mal-
let at the time of impact (as derived from camera tracking
data). Each measure of velocity is accomplished by fitting
a quadratic to the mallet path. The difference is that the
prediction is made before the actual impact, and the ground
truth is measured at the exact time of impact. (We did not
compare the predicted velocity to the drum pad’s MIDI ve-
locity because we found the velocity sensitivity of the drum
pad to be quite noisy, producing widely different MIDI ve-
locities for similar strike velocities.) We use the same veloc-
ity error measure used by Oda et al. [13] which compares
the relative sound pressure levels of the two strikes using an
equation derived from Hertz’s original study of rigid body
vibrations [10].

Figure 7 displays the results. We found that velocity
prediction was quite precise up through 50 ms of average
latency. 60 ms of latency brings an audible difference in
velocity, but not an extreme one. Performance then starts
to degrade until 80 ms latency, where 5% of predictions
are at least 15dB louder than the ground truth. Using our
current prediction algorithm, velocity prediction is not as
robust as timing prediction, but it is not as important for
synchronization.

4.3 Latency Peak Reduction

To test latency variation with and without the multipath
network, we sent a stream of packets from Sender to Re-
ceiver via the network of 4 forwarding servers located in
Virginia, Texas, Georgia, and London. The Sender machine
was located in New Jersey, USA, and the Receiver machine

was located in Oregon.

On the Receiver’s end, we measured and compared the
one-way transmission time from Sender to Receiver for each
path. The results of the latency measurements, with and
without the multipath network, are shown in Figure 8. (For
this experiment we synchronized the sending and receiving
servers’ clocks using Network Time Protocol, which is only
accurate within tens of milliseconds [12]. But it is not cru-
cial that the clocks be synchronized exactly, because we are
interested in the change of latency over time, not the abso-
lute latency.)

Direct Connection Latency Compared to Forwarders
T T T T T

200 T
Direct
@ 150 Virginia -
£ Tes || |
100 Georgia A
c London
g [
S s0 =
0 L L L L L L L L L
200 400 600 800 1000 1200 1400 1600 1800
Latency Reduction
120 T T T T T T T
__100 Original -
2 g Final i
g 60 Diff i
& 40 &
S 20 1
O I | 1 h 1 I I I 1
200 400 600 800 1000 1200 1400 1600 1800
Fastest Route
T T T T T T T T
)
g TX o o o B
g VA (D0 00 OO0 CESSSSSSsC [00 @O O o o A
S Direct® o o
w
L L L L L L L L L
200 400 600 800 _ 1000 1200 1400 1600 1800
Time (s)

Figure 8: The multipath network helped to reduce
latency peaks. The top plot shows measured laten-
cies for different paths. The middle plot shows the
original latency, the final latency, and the difference
between them. Note that two large spikes around
1000 and 1500 seconds were reduced by roughly
half. The lower plot shows the shortest route at
each time point. The previously mentioned latency
spikes were reduced by routing through Texas.

This experiment shows the multipath system works to re-
duce latency peaks. Latency peaks may be bursts (which
last on the scale of seconds or milliseconds), or they may be
sustained (which can last several minutes, or even hours).
Figure 8 shows that the multipath network is effective in re-
ducing both types. At times the route through Virginia was
faster than the direct route, but when congestion caused this
path to slow down, the direct route became the preferred
path. When in use, the Virginia route reduced latency by 5
ms, which can be enough time to allow an “unschedule” note
event to arrive in time to cancel a false positive. The mul-
tipath system was also effective at preventing some burst
latency. At around 1000 and 1500 seconds there are two
major bursts that are reduced by almost half by routing
through Texas. These two reductions kept all peaks under
80 ms, as opposed to greater than 100 ms. Finally, some
bursts were not possible to alleviate. These occurred when
the congestion was local to Sender or Receiver, or simply
included all the paths.

4.4 Comparison To Previous Work

Our current algorithm improves on the previous prediction
method used by Oda et al. [13] in the way it deals with
network latency, even without considering the multipath
forwarding strategy. In the original method, the Sender
transmits a single message per strike, sent once the Sender
has determined that a strike is imminent and the cannot
wait any longer due to its estimate of the network latency.

Latency = 48.1ms Latency = 61.0ms

10
% [[eT] 1
£ [New
5 5 5
S [N M fm Om (@ |

0 0

60 80 100 120 140 60 80 100 120 140
Latency = 77.5ms Latency = 89.8ms

Error (ms)
<
o

60 80 100 120 140 60 80 100 120 140
Tempo (beats per minute) Tempo (beats per minute)

Figure 9: Our new prediction algorithm has a lower
mean error in nearly every case than the method
used in [13].

However, if the Sender estimates the network latency in-
correctly, this can cause a note to be missed. Our current
method sends all predictions (on a per-frame basis) as long
as the mallet is descending at a certain speed. This allows
the Receiver to determine which of the predictions to act
on. This, in essence, gives us a perfect knowledge of the
per-packet latency.

To compare our current algorithm to Oda et al.’s method,
we implemented a slightly-improved version of their algo-
rithm that estimates the latency every 0.5 seconds, by send-
ing a timestamped packet from Receiver to Sender and com-
puting the one-way packet latency. We then model the la-
tency as a Gaussian distribution with the packet latency as
the mean, and use the 95th percentile in the algorithm la-
tency estimate. We use this conservative estimate in order
to avoid sending messages too late.

We tested the relative effectiveness of both methods by
running them simultaneously in the same manner as the
experiment in Section 4.1. The results of this comparison
are shown in Figure 9. At all levels of latency, the new
algorithm did as well as or better than the old approach.

5. DISCUSSION
5.1 Widening the Radius of Collaboration

Oda et al. previously hypothesized that 40 ms of predic-
tion at 120 beats per minute might be possible with an in-
strument such as MalLo, but our experiments have shown
that nearly twice that is possible, in spite of using a rela-
tively primitive prediction algorithm. This means a much
larger radius of collaboration than expected. In our experi-
ments we found that the round trip latency from New York
to San Francisco is roughly 80 ms. This means that this
DSMI can easily synchronize audio between artists in each
city by making up for 40 ms of one-way latency on each
side. It also means that if there are latency spikes of up
to 80 ms, MalLo can gracefully absorb them. Synchronized
performances between major cities such as Amsterdam and
Detroit (51 ms), London and Fez (47 ms), Hangzhou and
Hyderabad (41 ms), and Tel Aviv and Varna (57 ms) are
all theoretically possible [15] without reaching the limits of
prediction. In our companion video we demonstrate a jam
played over a latency of 90 ms, equivalent to the one-way
latency between New York and Buenos Aires.

Our current prediction algorithm, which uses quadratic
regression, is fairly primitive. We chose this approach to
highlight that in this case it is relatively simple to predict
these notes before they are played. We anticipate that more
advanced algorithms would add to the system’s range and
stability.

5.2 Tradeoffs and Challenges

MalLo is a new type of instrument, and one that requires a
musician to practice it to gain proficiency. The basic move-
ment is easy to understand, because it uses the metaphor of

striking an object, but it is slightly different from a typical
percussion instrument. This is likely to be the case with all
DSMIs. In order to have sufficient time to predict reliably,
it is useful to have longer, slightly slower movements than
traditional instruments.

There are limits on how fast a musician can play using
MalLo. The fastest playable note sequence depends on the
amount of latency. At a latency of 100 ms, a musician is
roughly limited to playing eighth notes at 150 bpm before
prediction accuracy fails.

In some cases the multipath forwarding approach will not
protect against congestion. If the congestion is near the
Sender or Receiver then it may not be possible to route
around it.

5.3 Design Philosophy

Internet latency will not significantly improve without fun-
damental changes to the architecture of the Internet. If
we want to take full advantage of the Internet as a per-
formance space we must design instruments that can be
played despite its latency characteristics. In this work, we
demonstrate a new approach to designing Internet-based
instruments that preserves certain characteristics of most
existing instruments—namely, the ability to be played in
note-by-note synchrony by ensembles of musicians.

What properties of an instrument make it well suited to
distributed, synchronous performance? What might be the
shared design strategies for new DSMIs? These questions
are wide open to future exploration. So far, it seems clear
that an instrument can be made to be more predictable by
slowing down the movements of a musician, or by restricting
paths of movement in particular ways. One might be able
to predict the fingering of a flute-like controller by placing
pressure sensors on the keys, while also making them require
a fair amount of force to press. This would give the system
time to infer the final finger position. A kick drum pedal
might also be a good candidate for pressure sensing and
tracking, because of its long travel and constant contact
with a foot. However, we do not yet know if this slowing of
instruments would be enjoyable for musicians, or irritating,
and we intend to explore this question in future work.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown how it is possible to use pre-
diction in order to create a truly distributed, synchronized,
musical instrument (DSMI) despite the latency inherent in
the Internet. We described the implementation of one such
instrument, MallLo, and showed that its timing prediction
is within the perceptual bounds of synchrony for network
one-way latencies up to 73 ms, and that its velocity predic-
tion performs well for latencies below 50 ms. We created
straightforward algorithms for both the sending and receiv-
ing parts of the DSMI. Finally, we presented a method for
latency peak reduction, using a network of servers to achieve
multipath transmission. These proved effective at reducing
the effects long term network fluctuations on the order of
5ms, and some burst latency on the order of 40 ms.

There are a number of new directions to explore using
MalLo and DSMIs. While synchronization can be achieved
with purely audio cues, it helps to have visual cues as well.
In the future we would like to explore using the same pre-
diction scheme to drive a visualization of the Sender’s move-
ments. Furthermore, the prediction strategies described
here could be used not only for combating latency, but for
local purposes, such as time correcting a note that is played
late. They could also be used to enable expensive synthesis
algorithms, such as simulating the sympathetically vibrat-
ing strings of a piano. Finally, of course, there is ample

space for future work exploring how to construct new DSMI
interfaces that best enable accurate prediction of musically
expressive actions.

7. ACKNOWLEDGMENTS

This work was supported by the Project X fund at Prince-
ton University. Much thanks to Huiwen Chang and Shuran
Song for help in developing the MalLo application, and to
Katie Wolf for valuable advice.

8. REFERENCES

[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and
R. Morris. Resilient overlay networks. In Proc. ACM
Symposium on Operating Systems Principles, 2001.

2] A. Barbosa. Displaced soundscapes: A survey of
network systems for music and sonic art creation.
Leonardo Music Journal, 13, 2003.

[3] G. Bradski and A. Kaehler. Learning OpenCV:
Computer Vision with the OpenCV library. O’Reilly,
2008.

[4] J. P. Céceres and A. B. Renaud. Playing the network:
the use of time delays as musical devices. In Proc.
International Computer Music Conference, 2008.

[5] C. Chafe. Distributed internet reverberation for audio
collaboration. In Proc. AES 24th International
Conference. Audio Engineering Society, 2003.

[6] C. Chafe. Living with net lag. In Proc. AES 43rd
International Conference, 2012.

[7] E. Chew, A. Sawchuk, C. Tanoue, and
R. Zimmermann. Segmental tempo analysis of
performances in user-centered experiments in the
distributed immersive performance project. In Proc.
Sound and Music Computing Conference, 2005.

[8] S. Dahl. Striking movements: A survey of motion
analysis of percussionists. Acoustical Science and
Technology, 32, 2011.

[9] N. Derbinsky and G. Essl. Exploring reinforcement
learning for mobile percussive collaboration. Proc.
NIME, 2012.

[10] H. Hertz. On the contact of elastic solids. Math, 92,
1881.

[11] A. Kapur, G. Wang, P. Davidson, and P. Cook.
Interactive Network Performance: A dream worth
dreaming? Organised Sound, 10, 2005.

[12] D. L. Mills. Internet time synchronization: The
network time protocol. Communications, IEEE
Transactions on, 39, 1991.

[13] R. Oda, A. Finkelstein, and R. Fiebrink. Towards
note-level prediction for networked music
performance. In Proc. NIMFE, 2013.

[14] P. Oliveros, S. Weaver, M. Dresser, J. Pitcher,

J. Braasch, and C. Chafe. Telematic music: Six
perspectives. Leonardo Music Journal, 19, 2009.

[15] P. Reinheimer and R. Will. WonderNetwork: Global
Ping Statistics, Jan. 2015.
https://wondernetwork.com/pings.

[16] M. Sarkar and B. Vercoe. Recognition and prediction
in a network music performance system for Indian
percussion. Proc. NIME, 2007.

[17] R. Szeliski. Computer vision: Algorithms and
applications. Springer, 2010.

[18] A. Tanaka and B. Bongers. Global string: A musical
instrument for hybrid space. In Proc. Cast01//Living
in Mized Realities, 2001.

