
Dispersive Flies Optimisation
Mohammad Majid al-Rifaie

Department of Computing
Goldsmiths University of London

London SE14 6NW, United Kingdom
Email: m.majid@gold.ac.uk

Abstract—One of the main sources of inspiration for techniques
applicable to complex search space and optimisation problems
is nature. This paper proposes a new metaheuristic – Dispersive
Flies Optimisation or DFO – whose inspiration is beckoned from
the swarming behaviour of flies over food sources in nature.
The simplicity of the algorithm, which is the implementation
of one such paradigm for continuous optimisation, facilitates
the analysis of its behaviour. A series of experimental trials
confirms the promising performance of the optimiser over a set
of benchmarks, as well as its competitiveness when compared
against three other well-known population based algorithms
(Particle Swarm Optimisation, Differential Evolution algorithm
and Genetic Algorithm). The convergence-independent diversity
of DFO algorithm makes it a potentially suitable candidate for
dynamically changing environment. In addition to diversity, the
performance of the newly introduced algorithm is investigated
using the three performance measures of accuracy, efficiency and
reliability and its outperformance is demonstrated in the paper.

I. INTRODUCTION

THROUGHOUT the history nature has been an inexpli-
cable source of inspiration for scientists and researchers.

Observations, many of which made unintentionally, have been
triggering the inquisitive minds for hundreds of years. The
task of resolving problems and its often present nature in the
minds of scientists boosts the impact of these observations,
which in cases led to discoveries. Among others, researchers
in mathematics, physics and natural sciences have had their
fair share of ‘observations-leading-to-discoveries’.

Observing the magnificently choreographed movements of
birds, behaviour of ants foraging, convergence of honey bees in
search for food source and so forth has led several researchers
to propose (inspired vs. identical) models used to solve various
optimisation problems. Genetic Algorithm [1], Particle Swarm
Optimisation [2] and Ant Colony Optimisation [3] are only few
such techniques belonging to the broader category of swarm
intelligence; it investigates collective intelligence and aims at
modelling intelligence by looking at individuals in a social
context and monitoring their interactions with one another as
well as their interactions with the environment.

The work presented here aims at proposing a novel nature-
inspired algorithm based on the behaviours of flies hovering
over food sources. This model – Dispersive Flies Optimisation
or DFO – is first formulated mathematically and then a set of
experiments is conducted to examine its performance when
presented with various problems.

II. FLIES IN NATURE

Flies are insects of the order Diptera, which comprises
a large order, containing an estimated 240, 000 species of
mosquitoes, gnats, midges and others [4]. Flies exist in various
types each exhibiting distinctive behaviour in different envi-
ronments. What most flies have in common is their swarming
behaviour which depends on several factors.

Swarming have been described in [5] where a difference
of shape between low swarms over dung and high swarms
over other markers have been logged. High swarms fluctuated
in height; vertical movements of the swarms of Anopheles
franciscanus (Culicidae) are said to be correlated with female
presence at swarms [6]. Height change in mosquito swarm
induced by a clarinet note [7] and the human voice [8]
may have evolved as responses to the flight tone of female
mosquitoes [9].

Swarms of flies are associated with visual markers ranging
in size from cowpies and stones to church steeples [10]. The
criteria used by insects to select markers may be quite subtle;
it was noted in [11] that certain objects are used repeatedly
by the mosquito Aedes cataphylla while similar objects nearby
are neglected.

As explained in [12], various swarms of flies usually “flying
in relation to a more or less conspicuous element of the
landscape, a lakeshore, a road, a treetop, below the tip of a
branch, in an opening in the forest canopy, above a cow, an
outstanding leaf", and so on according to species (e.g. [13],
[14]). Depending on the species, the size of the swarm may
consist of a single individual or tens or thousands, related to a
discrete swarm marker; or even countless millions in the zonal
swarms of lake shores.

Several elements play a role in disturbing the swarms of
flies; for instance, the presence of a threat causes the swarms
to disperse, leaving their current marker; they return to the
marker immediately after the threat is over. However, during
this period if they discover another marker which matches their
criteria closer, they adopt the new marker.

III. DISPERSIVE FLIES OPTIMISATION

Dispersive Flies Optimisation (DFO) is an algorithm in-
spired by the swarming behaviour of flies hovering over food
sources. As detailed in section II, the swarming behaviour of
flies is determined by several factors and that the presence of
threat could disturb their convergence on the marker (or the

optimum value). Therefore, having considered the formation
of the swarms over the marker, the breaking or weakening of
the swarms is also noted in the proposed algorithm.

In other words, the swarming behaviour of the flies, in
Dispersive Flies Optimisation, consist of two tightly connected
mechanisms, one is the formation of the swarms and the other
is its breaking or weakening. The algorithm and the math-
ematical formulation of the update equations are introduced
below.

The position vectors of the population are defined as:

~xti =
[
xti1, x

t
i2, ..., x

t
iD

]
, i = 1, 2, ...,NP (1)

where t is the current time step, D is the dimension of the
problem space and NP is the number of flies (population
size).

In the first generation, when t = 0, the ith vector’s jth

component is initialised as:

x0id = xmin,d + r (xmax,d − xmin,d) (2)

where r is a random number drawn from a uniform distribution
on the unit interval U (0, 1); xmin and xmax are the lower and
upper initialisation bounds of the dth dimension, respectively.
Therefore, a population of flies are randomly initialised with
a position for each flies in the search space.

On each iteration, the components of the position vectors are
independently updated, taking into account the component’s
value, the corresponding value of the best neighbouring fly
(consider ring topology) with the best fitness, and the value
of the best fly in the whole swarm:

xtid = xt−1nb,d + U (0, 1)× (xt−1sb,d − x
t−1
id) (3)

where xt−1nb,d is the value of the neighbour’s best fly in the dth

dimension at time step t−1; xt−1sb,d is the value of the swarm’s
best fly in the dth dimension at time step t− 1; and U (0, 1)
is the uniform distribution between 0 and 1.

The algorithm is characterised by two principle components:
a dynamic rule for updating flies position (assisted by a
social neighbouring network that informs this update), and
communication of the results of the best found fly to other
flies.

As stated earlier, the swarm is disturbed for various reasons;
one of the positive impacts of such disturbances is the dis-
placement of the disturbed flies which may lead to discovering
a better position. To consider this eventuality, an element of
stochasticity is introduced to the update process. Based on
this, individual components of flies’ position vectors are reset
if the random number, r, generated from a uniform distribution
on the unit interval U (0, 1) is less than the disturbance
threshold or dt. This guarantees a proportionate disturbance to
the otherwise permanent stagnation over a likely local minima.

Algorithm 1 summarises the DFO algorithm1.
The next section briefly presents three population-based

algorithms which will be used to compare the performance of

1The source code can be downloaded from the following page:
http://doc.gold.ac.uk/~map01mm/DFO/

Algorithm 1 Dispersive Flies Optimisation
1: while FE < 300, 000 do
2: for i = 1→ NP do
3: ~xi.fitness← f(~xi)
4: end for
5: sb← {sb, ∀ f(~xsb) = min (f(~x1), f(~x2), ..., f(~xNP))}
6: nb← {nb, ∀ f(~xnb) = min (f(~xleft), f(~xright))}
7: for i = 1→ NP do
8: for d = 1→ D do
9: τd ← xt−1nb,d + U (0, 1)× (xt−1sb,d − x

t−1
id)

10: if (r < dt) then
11: τd ← xmin,d + r (xmax,d − xmin,d)
12: end if
13: end for
14: ~xi ← ~τ
15: end for
16: end while

DFO, and then the results of a series of experiments conducted
on DFO over a set of benchmark functions are reported.

IV. POPULATION-BASED ALGORITHMS

The three algorithms introduced briefly in this section are
variations of particle swarm optimisation (PSO), differential
evolution algorithm (DE) and genetic algorithm (GA). One of
the common features of these algorithms are the interactions
between their population (i.e. information sharing), with the
ultimate goal of finding the optima.

A. Particle Swarm Optimisation

Particle swarm optimisation (PSO) is population based op-
timization technique developed in 1995 by Kennedy and Eber-
hart [2]. It came about as a result of an attempt to graphically
simulate the choreography of fish schooling or birds flying
(e.g. pigeons, starlings, and shorebirds) in coordinated flocks
that show strong synchronisation in turning, initiation of flights
and landing, despite the fact that experimental researches to
find leaders in such flocks failed [15].

A swarm in PSO algorithm comprises of a number of
particles and each particle represents a point in a multi-
dimensional problem space. The position of each particle, ~x,
is thus dependent on the particle’s own experience and those
of its neighbours. Each particle has a memory, containing
the best position found so far during the course of the
optimisation, which is called personal best or ~p. Whereas the
best position so far found throughout the population, or the
local neighbourhood, is called neighbourhood best.

A standard particle swarm version, Clerc-Kennedy PSO
(PSO-CK) or constriction PSO defines the position of each
particle by adding a velocity to the current position. Here is
the equation for updating the velocity and position of each
particle:

vtid = χ
(
vt−1id + c1r1

(
pid − xt−1id

)
+ c2r2

(
gid − xt−1id

))
(4)

xtid = vtid + xt−1id (5)

where χ which is the constriction factor is set to 0.72984
which is reported to be be working well in general [16];
vt−1id is the velocity of particle i in dimension d at time
step t − 1; c1,2 are the learning factors (also referred to as
acceleration constants) for personal best and neighbourhood
best respectively (they are constant); r1,2 are random numbers
adding stochasticity to the algorithm and they are drawn from
a uniform distribution on the unit interval U (0, 1); pid is the
personal best position of particle xi in dimension d; and gid is
neighbourhood best. In the experiments reported in this work,
local neighbourhood is used.

B. Differential Evolution Algorithm

Differential evolution (DE), an evolutionary algorithms
(EAs), is a simple global numerical optimiser over continuous
search spaces which was first introduced by Storn and Price
[17].

DE is a population based stochastic algorithm, proposed to
search for an optimum value in the feasible solution space. The
parameter vectors of the population are defined as follows:

~xgi =
[
xgi,1, x

g
i,2, ..., x

g
i,D

]
, i = 1, 2, ..., NP (6)

where g is the current generation, D is the dimension of the
problem space and NP is the population size. In the first
generation, (when g = 0), the ith vector’s jth component
could be initialised as:

x0i,j = xmin,d + r (xmax,d − xmin,d) (7)

where r is a random number drawn from a uniform distribution
on the unit interval U (0, 1), and xmin, xmax are the lower
and upper bounds of the dth dimension, respectively. The
evolutionary process (mutation, crossover and selection) starts
after the initialisation of the population.

1) Mutation: At each generation g, the mutation operation
is applied to each member of the population xgi (target vector)
resulting in the corresponding vector vgi (mutant vector). In
this work, DE/best/1 variation of mutation approaches is used:

vgi = xgbest + F
(
xgr1 − x

g
r2

)
(8)

where r1 and r2 are different from i and are distinct random
integers drawn from the range [1, NP]; In generation g, the
vector with the best fitness value is xgbest; and F is a positive
control parameter for constricting the difference vectors and
is set to 0.5.

2) Crossover: Crossover operation, improves population
diversity through exchanging some components of vgi (mutant
vector) with xgi (target vector) to generate ugi (trial vector).
This process is led as follows:

ugi,j =

vgi,j , if r ≤ CR or j = rd

xgi,j , otherwise
(9)

where r is a uniformly distributed random number drawn from
the unit interval U (0, 1), rd is randomly generated integer
from the range [1, D]; this value guarantees that at least one

component of the trial vector is different from the target vector.
The value of CR, which is another control parameter and is
set to 0.5, specifies the level of inheritance from vgi (mutant
vector).

3) Selection: The selection operation decides whether xgi
(target vector) or ugi (trial vector) would be able to to pass to
the next generation (g+1).In case of a minimisation problem,
the vector with a smaller fitness value is admitted to the next
generation:

xg+1
i =

 ugi , if f (ugi) ≤ f (xgi)

xgi , otherwise
(10)

where f (x) is the fitness function.

C. Genetic Algorithm

In this work, we use a real-valued Genetic Algorithm
(GA) which has previously shown to work well on real-
world problems [18], [19]. The GA works in the following
way: the individuals are first randomly initialised and their
fitness is evaluated through an objective function. Afterwards,
in a iterative process, each individual has a probability of
being exposed to recombination or mutation (or both). These
probabilities are pc and pm respectively. The recombination
operator used is arithmetic crossover and the mutation operator
used is Cauchy mutation using an annealing scheme. At the
end, in order to comb out the least fit individual, tournament
selection [20] is utilised.

The reason behind using Cauchy mutation operator vs. the
well-known Gaussian mutation operator is the thick tails of
the Cauchy distribution that allows it to generate considerable
changes, more frequently, compared to the Gaussian distribu-
tion. The Cauchy distribution is defined by:

C (x, α, β) =
1

βπ

(
1 +

(
x−α
β

)2) (11)

where α ≤ 0, β > 0, −∞ < x < ∞ (α and β are
parameters that affect the mean and spread of the distribution).
As specified in [19], all of the solution parameters are subject
to mutation and the variance is scaled with 0.1× the range of
the specific parameter in question.

In order to decrease the value of β as a function of the
elapsed number of generations t, an annealing scheme was
applied (α was set to 0):

β (t) =
1

1 + t
(12)

As for the arithmetic crossover, the offspring is generated
as a weighted mean of each gene of the two parents:

offspringi = r × parent1i + (1− r)× parent2i (13)

where offspringi is the i’th gene of the offspring, and parent1i
and parent2i refer to the i’th gene of the two parents, respec-
tively. The weight r is drawn from a uniform distribution on
the unit interval U (0, 1).

In the experiments conducted in this paper, the probabilities
of crossover and mutation of the individuals is set to pc =
0.7 and pm = 0.9 respectively. The tournament size of the
tournament selection is set to two, and elitism with an elite
size of one is deployed to maintain the best found solution in
the population.

V. EXPERIMENTS

This section presents a set of experiment investigating the
performance of the newly introduced Dispersive Flies Opti-
misation (DFO) and discusses the results. Then, to understand
whether disturbance plays an important role in the optimisation
process, a control algorithm is presented DFO-c where no
disturbance is inflicted upon the population of flies.

Recognising the lose of diversity as a common issue in
all distribution based evolutionary optimisers (since dispersion
reduces with convergence), the impact of disturbance on
preserving the diversity of the population is also studied.
Additionally, an optimal value for disturbance threshold, dt, is
suggested. Afterwards the performance of DFO is compared
against few other well-known population-based algorithms,
namely Particle Swarm Optimisation (PSO), Differential Evo-
lution (DE) and Genetic Algorithm (GA).

A. Experiment Setup

The benchmarks used in the experiments (see Table I) are
divided in two sets, f1−14 and g1−14; more details about these
functions (e.g. global optima, mathematical formulas, etc.) are
reported in [16] and [21]. The first set, f1−14, have been used
by several authors [22], [16], [23] and it contains the three
classes of functions recommended by Yao et al. [24]: unimodal
and high dimensional, multimodal and high dimensional, and
low dimensional functions with few local minima. In order not
to initialise the flies on or near a region in the search space
known to have the global optimum, region scaling technique is
used [25], which makes sure the flies are initialised at a corner
of the search space where there are no optimal solutions.

The second test set, g1−14, are the first fourteen functions of
CEC 2005 test suite [21] and they present more challenging
features of the common functions from the aforementioned
test set (e.g. shifted by an arbitrary amount within the search
space and/or rotated). This set has also been used for many
researchers.

One hundred flies were used in the experiments and the
termination criterion for the experiments is set to reaching
300, 000 function evaluations (FEs). There are 50 Monte
Carlo simulations for each experiment and the results are
averaged over these independent simulations. Apart from the
disturbance threshold which is set to dt = 0.001, there are no
adjustable parameters in DFO’s update equation.

The aim of the experiments is to study and demonstrate the
qualities of the newly introduced algorithm as a population
based continuous optimiser. The behaviour of the DFO algo-
rithm is compared against its control counterpart and some
other population based algorithms (see Sections IV-A, IV-B
and IV-C).

B. Performance measures and statistical analysis

In order to conduct the statistical analysis measuring the
presence of any significant difference in the performance of
the algorithms, Wilcoxon 1× 1 non-parametric statistical test
is deployed. The performance measures used in this paper are
error, efficiency, reliability and diversity which are described
below.

Error is defined by the quality of the best agent in terms
of its closeness to the optimum position (if knowledge about
the optimum position is known a priori, which is the case
here). Another measure used is efficiency which is the number
of function evaluations before reaching a specified error, and
reliability is the percentage of trials where a specified error is
reached. These performance measures are defined as below:

ERROR = |f (~xg)− f (~xo)| (14)

EFFICIENCY =
1

n

n∑
i=1

FEs (15)

RELIABILITY =
n

′

n
× 100 (16)

where ~xg is the best position found and ~xo is the position of
the known optimum solution; n is the number of trials in the
experiment and n

′
is the number of successful trials, FEs is the

number of function evaluations before reaching the specified
error, which in these experiments, set to 10−8.

In this work, diversity, which is the degree of convergence
and divergence, is defined as a measure to study the popula-
tion’s behaviour with regard to exploration and exploitation.
There are various approaches to measure diversity. The average
distance around the population centre is shown [26] to be a
robust measure in the presence of outliers and is defined as:

DIVERSITY =
1

NP

NP∑
i=1

√√√√ D∑
j=1

(
xji − x̄j

)2
(17)

x̄j =
1

NP

NP∑
i=1

xji (18)

where NP is the number of flies in the population, D is the
dimensionality of the problem, xji is the value of dimension
j of agent i, and x̄j is the average value of dimension j over
all agents.

C. Performance of Dispersive Flies Optimisation

The error, efficiency and reliability results of DFO perfor-
mance over the benchmarks are reported in Table II. The first
five columns detail the error-related figures and the last column
highlights the median efficiency along with the reliability
(shown between brackets) of the algorithm in finding the
optima. The algorithm exhibits a promising performance in op-
timising the presented problem set where half the benchmarks
(f1−2,5−11 and g1−2,7,9) are optimised with the specified
accuracy. The figures in the table are expanded in the following
categories:

TABLE I
BENCHMARK FUNCTIONS

Fn Name Class Dimension Feasible Bounds
f1 Sphere/Parabola Unimodal 30 (−100, 100)D

f2 Schwefel 1.2 Unimodal 30 (−100, 100)D

f3 Generalized Rosenbrock Multimodal 30 (−30, 30)D

f4 Generalized Schwefel 2.6 Multimodal 30 (−500, 500)D

f5 Generalized Rastrigin Multimodal 30 (−5.12, 5.12)D

f6 Ackley Multimodal 30 (−32, 32)D

f7 Generalized Griewank Multimodal 30 (−600, 600)D

f8 Penalized Function P8 Multimodal 30 (−50, 50)D

f9 Penalized Function P16 Multimodal 30 (−50, 50)D

f10 Six-hump Camel-back Low Dimensioal 2 (−5, 5)D

f11 Goldstein-Price Low Dimensioal 2 (−2, 2)D

f12 Shekel 5 Low Dimensioal 4 (0, 10)D

f13 Shekel 7 Low Dimensioal 4 (0, 10)D

f14 Shekel 10 Low Dimensioal 4 (0, 10)D

g1 Shifted Sphere Unimodal 30 (−100, 100)D

g2 Shifted Schwefel 1.2 Unimodal 30 (−100, 100)D

g3 Shifted Rotated High Conditioned Elliptic Unimodal 30 (−100, 100)D

g4 Shifted Schwefel 1.2 with Noise in Fitness Unimodal 30 (−100, 100)D

g5 Schwefel 2.6 with Global Optimum on Bounds Unimodal 30 (−100, 100)D

g6 Shifted Rosenbrock Multimodal 30 (−100, 100)D

g7 Shifted Rotated Griewank without Bounds Multimodal 30 (−600, 600)D

g8 Shifted Rotated Ackley with Global Optimum on Bounds Multimodal 30 (−32, 32)D

g9 Shifted Rastrigin Multimodal 30 (−5, 5)D

g10 Shifted Rotated Rastrigin Multimodal 30 (−5, 5)D

g11 Shifted Rotated Weierstrass Multimodal 30 (−0.5, 0.5)D

g12 Schwefel Problem 2.13 Multimodal 30 (−π, π)D

g13 Expanded Extended Griewank plus Rosenbrock Expanded 30 (−5, 5)D

g14 Shifted Rotated Expanded Scaffer Expanded 30 (−100, 100)D

1) Unimodal, high dimensional (f1,2, g1−5): The algorithm
optimises 57% of the benchmarks in this category; while both
functions in the first set are optimised (f1,2), only two out of
five benchmarks in the second and more challenging set are
optimised to the specified accuracy. All optimised benchmarks
achieve 100% success.

2) Low dimensional and few local minima (f10−14): In this
category, 40% of the benchmarks are optimised, with 100%
reliability for f10 and 32% for f11. However, none of the
Shekel functions (f12−14) are optimised; Shekel is known to
be a challenging function to optimise due to the presence of
several broad sub-optimal minima; also the proximity of a
small number of optima to the Shekel parameter ~ai is another
reason for the difficulty of optimising these set of functions.

3) Multimodal, high dimensional (f3−9, g6−14): The op-
timiser is able to optimise 50% of the benchmarks in this
category (f5−9 and g7,9), 71% of which achieve 100% success
rate (all except f7, g7 with 28% and 10% success rates
respectively). The optimiser exhibit a promising performance
when dealing with the difficult Rosenbrock functions (f3, g6),
reaching the error of 10−4 and 10−3 respectively. The algo-
rithm performs exceptionally well in optimising the infamous
Rastrigin functions, both common and shifted mode (i.e. f5

and g9), achieving 100% success rate; however it does show
weakness in the more challenging g10 rotated version.

The success of the optimiser in optimising the notorious
Rastrigin function in its common and shifted modes will be
discussed in the context of DFO’s dimension-to-dimension
disturbance mechanism induced by the algorithm.

In order to provide a better understanding of the behaviour
of the algorithm, in the next section, the disturbance is
discarded and the diversity of the algorithm is studied.

D. Diversity in DFO

Most swarm intelligence and evolutionary techniques com-
mence with exploration and, over time (i.e. function evalu-
ations or iterations), lean towards exploitation. Maintaining
the right balance between exploration and exploitation phases
has proved to be difficult. The absence of the aforementioned
balance leads to a weaker diversity when encountering a
local minimum and thus the common problem of pre-mature
convergence to a local minimum surfaces.

Similar to other swarm intelligence and evolutionary al-
gorithms, DFO commences with exploration and over time,
through its mechanism (i.e. gradual decrease in the dis-
tance between the members of the population and as such,

TABLE II
DFO – DISPERSIVE FLIES OPTIMISATION

Min. Max. Median Mean StdDev Eff. (Rel.)
f1 6.46E-47 1.97E-40 1.75E-43 1.07E-41 3.49E-41 46850 (100%)

f2 2.24E-12 6.01E-10 6.46E-11 1.08E-10 1.26E-10 239850 (100%)

f3 1.74E-04 1.45E+01 3.65E-01 2.17E+00 3.62E+00 ∞ (0%)

f4 3.89E-07 5.05E-03 2.87E-05 2.49E-04 7.81E-04 ∞ (0%)

f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 84850 (100%)

f6 2.84E-14 6.39E-14 3.91E-14 3.88E-14 6.49E-15 121200 (100%)

f7 0.00E+00 1.54E-01 1.85E-02 3.25E-02 3.74E-02 47450 (28%)

f8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50950 (100%)

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 55550 (100%)

f10 0.00E+00 2.22E-16 0.00E+00 4.00E-17 8.62E-17 1700 (100%)

f11 0.00E+00 8.10E+01 8.10E+01 5.51E+01 3.82E+01 2100 (32%)

f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0%)

f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0%)

f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0%)

g1 5.68E-14 2.27E-13 1.71E-13 1.49E-13 4.28E-14 45300 (100%)

g2 4.55E-12 9.78E-10 3.88E-11 1.03E-10 1.57E-10 234100 (100%)

g3 3.58E+05 3.22E+06 1.40E+06 1.38E+06 6.23E+05 ∞ (0%)

g4 1.40E+00 2.38E+02 2.18E+01 3.71E+01 4.74E+01 ∞ (0%)

g5 3.47E+03 1.82E+04 8.95E+03 9.26E+03 3.17E+03 ∞ (0%)

g6 1.66E-03 1.51E+02 3.06E+00 1.41E+01 3.05E+01 ∞ (0%)

g7 3.31E-11 2.64E-01 1.97E-02 2.93E-02 4.05E-02 236800 (10%)

g8 2.00E+01 2.02E+01 2.01E+01 2.01E+01 3.11E-02 ∞ (0%)

g9 1.14E-13 2.27E-13 1.71E-13 1.52E-13 3.71E-14 89450 (100%)

g10 1.29E+02 3.42E+02 2.34E+02 2.38E+02 5.62E+01 ∞ (0%)

g11 2.46E+01 4.02E+01 3.11E+01 3.12E+01 3.23E+00 ∞ (0%)

g12 9.73E+01 1.58E+04 2.34E+03 3.62E+03 3.51E+03 ∞ (0%)

g13 9.34E-01 2.01E+00 1.48E+00 1.48E+00 3.07E-01 ∞ (0%)

g14 1.23E+01 1.40E+01 1.35E+01 1.35E+01 3.69E-01 ∞ (0%)

each agent’s local and global best positions), moves towards
exploitation. However, having implemented the disturbance
threshold, a dose of diversity (i.e. dt) is introduced in the
population throughout the optimisation process, aiming to
enhance the diversity of the algorithm.

Figure 1 illustrates the convergence of the population to-
wards the optima and their diversities in three random trials
over three benchmarks (i.e. g1,7,9 chosen from the second set)
as examples from unimodal and multimodal functions. The
difference between the error and the diversity values demon-
strates the algorithm’s ability in exploration while converging
to the optima whose fitness reach as low as 10−13 in g1 and
g9.

Exploring the role of disturbance in increasing diversity,
a control algorithm is proposed (DFO-c) where there is no
disturbance (dt = 0) during the position update process.

The graphs in Fig. 2 illustrate the diversity of DFO-c
populations in randomly chosen trials over three sample bench-
marks (again g1,7,9). The graphs illustrate that the diversity of
the population in DFO-c is less than DFO, thus emphasising
the impact of disturbance in injecting diversity which in turn
facilitates the escape from local minima (e.g. as demonstrated
in case of the highly multimodal Rastrigin functions f5, g9).

0 500 1000 1500 2000 2500 3000

1e
−

13
1e

−
05

1e
+

03

DFO g1

Iterations

Diversity
Error

0 500 1000 1500 2000 2500 3000
1e

−
02

1e
+

02
1e

+
06

DFO g7

Iterations

Diversity
Error

0 500 1000 1500 2000 2500 3000

1e
−

13
1e

−
05

1e
+

03

DFO g9

Iterations

Diversity
Error

Fig. 1. DFO: diversity and error in g1,7,9.

Note the gradual shrinkage of diversity in g9 (≈ 10−13)
which is a clear indication of a premature convergence to a
local minima with very poor chance of escape.

In order to compare the performance of DFO and its control
counterpart, Table III presents the result of optimising the
benchmarks using DFO-c. Additionally, a statistical analysis
is conducted and the output is reported in Table IV where
the performance is compared using the three aforementioned
measures of error, efficiency and reliability (see Section V-B
for the definitions of the measures). The results show that in
89% of cases (where there is a significant difference between
the two algorithms), DFO is performing significantly better
than its control counterpart (DFO-c) which is stripped from the

0 500 1000 1500 2000 2500 3000

1e
−

12
1e

−
04

1e
+

04
DFO−c g1

Iterations

Diversity
Error

0 500 1000 1500 2000 2500 3000

1e
−

05
1e

+
01

DFO−c g7

Iterations

Diversity
Error

0 500 1000 1500 2000 2500 3000

1e
−

13
1e

−
03

1e
+

07

DFO−c g9

Iterations

Diversity
Error

Fig. 2. DFO-c: diversity and error in g1,7,9.

diversity inducing disturbance. Furthermore, in all multimodal
functions (f3−9 and g6−12), whenever there is a statistically
significant difference between DFO and DFO-c, the former
demonstrates significant outperformance over the later.

Following on the results from measuring error, Table IV also
shows that in terms of efficiency and reliability measures, DFO
is 79% more efficient than its control counterpart, and 92%
more reliable.

E. Fine Tuning Disturbance Threshold

The role of disturbance in increasing the diversity of DFO
population is discussed earlier (Section V-D). Also, the im-
portance of disturbance is investigated on the optimisation
capability of DFO by introducing a control algorithm which

TABLE III
DFO-C – CONTROL DFO ALGORITHM

Min. Max. Median Mean StdDev Eff. (Rel.)
f1 1.44E-56 3.09E-36 1.27E-45 9.65E-38 4.55E-37 65400 (100%)

f2 7.29E-09 3.23E+01 1.28E-04 7.60E-01 4.60E+00 298200 (2%)

f3 5.27E-05 1.61E+02 5.08E+00 1.67E+01 3.08E+01 ∞ (0%)

f4 4.48E-09 3.20E+03 1.55E+03 1.40E+03 8.66E+02 141500 (2%)

f5 1.87E+02 4.17E+02 2.96E+02 2.94E+02 5.76E+01 ∞ (0%)

f6 1.97E+01 2.00E+01 1.98E+01 1.98E+01 5.24E-02 ∞ (0%)

f7 2.22E-16 6.00E+00 9.30E-02 3.51E-01 8.72E-01 64050 (8%)

f8 1.03E-32 3.30E+02 2.14E+00 2.35E+01 5.84E+01 132950 (24%)

f9 0.00E+00 1.57E+02 1.54E-01 5.35E+00 2.27E+01 176500 (30%)

f10 0.00E+00 2.22E-16 0.00E+00 7.99E-17 1.08E-16 1700 (100%)

f11 0.00E+00 8.10E+01 8.10E+01 5.99E+01 3.59E+01 2100 (26%)

f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0%)

f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0%)

f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0%)

g1 5.68E-14 9.37E-05 1.14E-13 1.91E-06 1.33E-05 70600 (94%)

g2 1.68E-09 2.23E+01 1.23E-04 4.63E-01 3.14E+00 257700 (2%)

g3 2.18E+05 5.38E+06 1.67E+06 1.73E+06 9.39E+05 ∞ (0%)

g4 2.23E+02 1.74E+04 1.80E+03 2.91E+03 3.36E+03 ∞ (0%)

g5 5.79E+03 1.38E+04 8.50E+03 8.69E+03 2.00E+03 ∞ (0%)

g6 2.25E-04 9.53E+01 8.61E+00 1.68E+01 2.52E+01 ∞ (0%)

g7 3.01E-10 2.13E-01 3.02E-02 4.17E-02 4.41E-02 263900 (2%)

g8 2.00E+01 2.02E+01 2.00E+01 2.01E+01 3.89E-02 ∞ (0%)

g9 8.36E+01 2.64E+02 1.62E+02 1.64E+02 4.61E+01 ∞ (0%)

g10 1.22E+02 4.93E+02 2.69E+02 2.71E+02 7.69E+01 ∞ (0%)

g11 1.98E+01 4.11E+01 3.10E+01 3.13E+01 3.97E+00 ∞ (0%)

g12 2.32E+02 1.38E+04 3.04E+03 4.78E+03 3.88E+03 ∞ (0%)

g13 4.79E+00 3.56E+01 1.47E+01 1.58E+01 6.47E+00 ∞ (0%)

g14 1.28E+01 1.45E+01 1.36E+01 1.37E+01 3.38E-01 ∞ (0%)

lacks the disturbance mechanism and the results demonstrate
the positive impact of this mechanism.

The aim of this section is to recommend a value for the dis-
turbance threshold, dt. The range of disturbance probabilities
used in this experiment is between 1 to 10−9 and the values
were chosen according to:

dtn = 10−n, 0 ≤ n ≤ 9

Fig. 3 illustrates the performance of DFO using these dt
probabilities. Both set of benchmarks (i.e. f1−14 and g1−14)
have been used to find a suitable value for the disturbance
threshold. As the heat map highlights, the optimal range is
10−2 < dt < 10−4 and the overall recommended value of
dt = 10−3 is suggested as a good compromise.

F. Comparing DFO with other Population-Based Optimisers

Having presented the performance of the DFO algorithm
(taking into account the three performance measures of error,
efficiency and reliability, as well as the diversity of its pop-
ulation and the impact of disturbance on its behaviour), this
section focuses on contrasting the introduced algorithm with
few well-known optimisation algorithms. The three population

TABLE IV
COMPARING DFO AND DFO-C PERFORMANCE

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the error differ-
ence between each pair of algorithms is significant at the 5% level, the pairs
are marked. X–o shows DFO is significantly outperforming its counterpart
algorithm; and o–X shows that the algorithm compared to DFO is significantly
better than DFO. In terms of the efficiency and reliability measures, 1 – 0 (or
0 – 1) indicates that the left (or right) algorithm is more efficient/reliable. The
figures, n – m, in the last row present a count of the number of X’s or 1’s in
the respective columns.

DFO – DFO-c
Error Efficiency Reliability

f1 o – X 1 – 0 –

f2 X – o 1 – 0 1 – 0

f3 X – o – –

f4 X – o 0 – 1 0 – 1

f5 X – o 1 – 0 1 – 0

f6 X – o 1 – 0 1 – 0

f7 X – o 1 – 0 1 – 0

f8 X – o 1 – 0 1 – 0

f9 X – o 1 – 0 1 – 0

f10 o – X 0 – 1 –

f11 – 0 – 1 1 – 0

f12 – – –

f13 – – –

f14 – – –

g1 – 1 – 0 1 – 0

g2 X – o 1 – 0 1 – 0

g3 X – o – –

g4 X – o – –

g5 – – –

g6 – – –

g7 X – o 1 – 0 1 – 0

g8 – – –

g9 X – o 1 – 0 1 – 0

g10 X – o – –

g11 – – –

g12 – – –

g13 X – o – –

g14 X – o – –

16 – 2 11 – 3 11 – 1

algorithms deployed for this comparison are Differential Evo-
lution (DE), Particle Swarm Optimisation (PSO) and Genetic
Algorithm (GA). These algorithms are briefly described earlier
in Sections IV-A, IV-B and IV-C. Generic versions of each
algorithm are used against the generic version of Dispersive
Flies Optimisation. In this comparison, only the second and
the more challenging set of benchmarks, g1−14 are used.
Table V presents the optimising results of the aforementioned
algorithms, and as shown, the algorithms have optimised some
of the benchmark to the specified accuracy, 10−8. Table VI
shows the result of the statistical analysis comparing DFO with
the other three optimisers. Based on this comparison, whenever
there is a significant difference between the performance of
DFO and the other algorithms, DFO significantly outperforms
DE, PSO and GA in 66.67%, 58.33% and 85.71% of the cases,

Heat map for disturbance threshold

 0 1 2 3 4 5 6 7 8 9

Disturbance Threshold, dt = 10
-n

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

g13

g14

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

E
rr

o
r

Fig. 3. Fine tuning disturbance threshold

TABLE V
DE (DIFFERENTIAL EVOLUTION), PSO (PARTICLE SWARM

OPTIMISATION) AND GA (GENETIC ALGORITHM)

DE PSO GA
Error Eff. (Rel.) Error Eff. (Rel.) Error Eff. (Rel.)

g1 1.38E-13 21500 (100%) 5.23E-14 656236 (100%) 5.04E-05 ∞ (0%)

g2 1.72E-07 ∞ (0%) 1.33E-01 ∞ (0%) 1.21E+04 ∞ (0%)

g3 9.65E+06 ∞ (0%) 1.52E+06 ∞ (0%) 1.47E+07 ∞ (0%)

g4 4.92E-01 ∞ (0%) 7.89E+03 ∞ (0%) 5.13E+04 ∞ (0%)

g5 2.34E+03 ∞ (0%) 5.04E+03 ∞ (0%) 2.09E+04 ∞ (0%)

g6 2.30E+00 265800 (12%) 2.16E+01 ∞ (0%) 7.23E+02 ∞ (0%)

g7 5.39E-01 ∞ (0%) 1.04E-02 279653 (10%) 5.48E+03 ∞ (0%)

g8 2.09E+01 ∞ (0%) 2.09E+01 ∞ (0%) 2.04E+01 ∞ (0%)

g9 3.47E+01 ∞ (0%) 9.59E+01 ∞ (0%) 2.20E+01 ∞ (0%)

g10 1.47E+02 ∞ (0%) 1.14E+02 ∞ (0%) 1.39E+02 ∞ (0%)

g11 3.65E+01 ∞ (0%) 3.00E+01 ∞ (0%) 1.17E+01 ∞ (0%)

g12 5.85E+05 ∞ (0%) 9.51E+03 ∞ (0%) 8.14E+03 ∞ (0%)

g13 5.70E+00 ∞ (0%) 5.35E+00 ∞ (0%) 2.70E+00 ∞ (0%)

g14 1.34E+01 ∞ (0%) 1.25E+01 ∞ (0%) 1.39E+01 ∞ (0%)

respectively. Table VII summaries the efficiency results of the
three optimisers with that of DFO; note that only the efficiency
of functions reaching the specified error is given. As shown in
the table, DFO, in the majority of cases, outperforms the other
algorithms. In other words, although, when compared with DE,
DFO only outperforms marginally (60%), it outperforms both
PSO and GA in all cases (100%). The reliability comparison
of DFO with the other optimisers is given in Table VIII. DFO
is shown to be the most reliable algorithm in this comparison.

TABLE VI
COMPARING ERROR IN DFO WITH DE, PSO AND GA

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the difference
between each pair of algorithms is significant at the 5% level, the pairs are
marked. X–o shows that the left algorithm is significantly better than the right
one; and o–X shows that the right one is significantly better than the left. n
– m in the row labeled Σ is a count of the number of X’s in the columns
above.

DFO - DE DFO - PSO DFO - GA
g1 – o – X X – o

g2 X – o X – o X – o

g3 X – o – X – o

g4 o – X X – o X – o

g5 o – X o – X X – o

g6 o – X X – o X – o

g7 X – o o – X X – o

g8 X – o X – o X – o

g9 X – o X – o X – o

g10 o – X o – X o – X

g11 X – o – o – X

g12 X – o X – o X – o

g13 X – o X – o X – o

g14 – o – X X – o∑
8 – 4 7 – 5 12 – 2

TABLE VII
COMPARING EFFICIENCY IN DFO WITH DE, PSO AND GA

In this table, 1 – 0 (0 – 1) indicates that the left (right) algorithm is more
efficient. The figures, n – m, in the last row present a count of the number of
1’s in the respective columns. Note that non-applicable functions have been
removed from the table.

DFO - DE DFO - PSO DFO - GA
g1 0 – 1 1 – 0 1 – 0

g2 1 – 0 1 – 0 1 – 0

g6 0 – 1 – –

g7 1 – 0 1 – 0 1 – 0

g9 1 – 0 1 – 0 1 – 0∑
3 – 2 4 – 0 4 – 0

TABLE VIII
COMPARING RELIABILITY IN DFO WITH DE, PSO AND GA

In this table, 1 – 0 (0 – 1) indicates that the left (right) algorithm is more
reliable. The figures, n – m, in the last row present a count of the number of
1’s in the respective columns. Note that non-applicable functions have been
removed from the table.

DFO - DE DFO - PSO DFO - GA
g2 1 – 0 1 – 0 1 – 0

g6 0 – 1 – –

g7 1 – 0 – 1 – 0

g9 1 – 0 1 – 0 1 – 0∑
3 – 1 2 – 0 4 – 0

0 500 1000 1500 2000 2500 3000

1e
−

12
1e

−
02

1e
+

08

g1

Iterations

D
iv

er
si

ty

DFO
DE
GA
PSO

0 500 1000 1500 2000 2500 3000

1e
−

02
1e

+
02

1e
+

06

g7

Iterations
D

iv
er

si
ty

DFO
DE
GA
PSO

0 500 1000 1500 2000 2500 3000

1e
−

13
1e

−
03

1e
+

07
g9

Iterations

D
iv

er
si

ty

DFO
DE
GA
PSO

Fig. 4. Diversity of the population in DFO, DE, PSO and GA over three
random trials in g1,7 and 9.

While DFO outperforms DE in 75% of cases, it show 100%
outperformance when compared with PSO and GA. In order
to compare the diversity of the DFO algorithm with the
other three optimisers, three benchmarks were chosen from
unimodal and multimodal categories (g1,7,9). The result of this
comparison is illustrated in Fig. 4. It is shown that DE has the
least diversity in both uni- and multimodal functions. On the
other hand, the diversity of the population in PSO decreases
as the population converges towards an optimum (see g1);
however, when convergence does not occur (e.g. in g7,9), PSO
maintain its high diversity throughout the optimisation process.
GA shows a similar pattern to that of PSO in multimodal
functions, which is the gradual diversity decrease over time;
however it maintains a higher diversity for the unimodal
function than PSO (perhaps attributable to the difference in
the fitness of the best positions found in both algorithms). In

terms of DFO, diversity is less convergence-dependent and
more stable across all modalities.

VI. CONCLUSION

Dispersive Flies Optimisation (DFO), a simple numerical
optimiser over continuous search spaces, is a population based
stochastic algorithm, proposed to search for an optimum value
in the feasible solution space; despite its simplicity, the algo-
rithm’s competitiveness over an exemplar set of benchmark
functions is demonstrated.

As part of the study and in an experiment, a control
algorithm is proposed to investigate the behaviour of the
optimiser. In this experiment, the algorithm’s induced distur-
bance mechanism shows the ability to maintain a stable and
convergence-independent diversity throughout the optimisation
process. Additionally, a suitable value is recommended for
the disturbance threshold which is the only parameter in the
update equations to be optimised. This parameter controls the
level of diversity by injecting a component-wise disturbance
(or restart) in the flies, aiming to preserve a balance between
exploration and exploitation.

In addition to diversity, DFO’s performance has been in-
vestigated using three other performance measures (i.e. error,
efficiency and reliability). Using these measures, it is estab-
lished that the newly introduced algorithm, outperforms few
generic population based algorithms (i.e. differential evolution,
particle swarm optimisation and genetic algorithm) in all of
the aforementioned measures over the presented benchmarks.
In other words, DFO is more efficient and reliable in 84.62%
and 90% of the cases, respectively; furthermore, when there
exists a statistically significant difference, DFO converges to
better solutions in 71.05% of problem set.

A. Future Research

Much further research remains to be conducted on this
simple new concept and paradigm. Among the possible future
research are investigating the algorithm for an adaptive distur-
bance threshold, dt. Additionally, optimising multi-objective
real world problems is yet to be researched; this would be a
continuation of an earlier set of works on the deployment of
population-based algorithms for detecting metastasis in bone
scans and calcifications in mammographs [27]. At last, but
not least, given the demonstrated stable and convergence-
independent diversity of Dispersive Flies Optimisation (in the
context of the presented benchmarks), another exciting future
research is to investigate the performance of DFO in the
context of dynamic optimisation problems.

REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 1989.

[2] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Networks,
vol. IV. Piscataway, NJ: IEEE Service Center, 1995, pp. 1942–1948.

[3] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,”
Computational Intelligence Magazine, IEEE, vol. 1, no. 4, pp. 28–39,
2006.

[4] B. M. Wiegmann and D. K. Yeates, Tree of Life: Diptera. The Tree
of Life Web Project, 1996.

[5] J. Downes, “Observations on the swarming flight and mating of
culicoides (diptera: Ceratopogonidae) 1,” Transactions of the Royal
Entomological Society of London, vol. 106, no. 5, pp. 213–236, 1955.

[6] J. N. Belkin, N. Ehmann, and G. Heid, “Preliminary field observations
on the behavior of the adults of anopheles franciscanus mccracken in
southern california,” Mosq News, vol. 11, pp. 23–31, 1951.

[7] H. T. Nielsen, “Swarming and some other habits of mansonia perturbans
and psorophora ferox (diptera: Culicidae),” Behaviour, pp. 67–89, 1964.

[8] F. Knab, “The swarming of culex pipiens,” Psyche: A Journal of
Entomology, vol. 13, no. 5, pp. 123–133, 1906.

[9] L. M. Roth, “A study of mosquito behavior. an experimental laboratory
study of the sexual behavior of aedes aegypti (linnaeus),” American
Midland Naturalist, vol. 40, no. 2, pp. 265–352, 1948.

[10] R. T. Sullivan, “Insect swarming and mating,” The Florida Entomologist,
vol. 64, no. 1, pp. 44–65, 1981.

[11] W. Klassen and B. Hocking, “The influence of a deep river valley
system on the dispersal of aedes mosquitos,” Bulletin of Entomological
Research, vol. 55, no. 02, pp. 289–304, 1964.

[12] J. Downes, “The swarming and mating flight of diptera,” Annual review
of entomology, vol. 14, no. 1, pp. 271–298, 1969.

[13] J. Downes, “Assembly and mating in the biting nematocera,” Intern.
Congr. Entomol. Proc. 10th, Montreal, pp. 425–34, 1958.

[14] R. L. Blickle, “Observations on the hovering and mating of tabanus
bishopp,” Stone. Ann. Entomol. Soc. 52, pp. 183–90, 1958.

[15] F. Heppner and U. Grenander, “A stochastic nonlinear model for
coordinated bird flocks.” American Association for the Advancement of
Science, Washington, DC(USA)., 1990.

[16] D. Bratton and J. Kennedy, “Defining a standard for particle swarm
optimization,” in Proc of the Swarm Intelligence Symposium. Honolulu,
Hawaii, USA: IEEE, 2007, pp. 120–127.

[17] R. Storn and K. Price, “Differential evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces,” 1995,
tR-95-012, [online]. Available: http://www.icsi.berkeley.edu/ storn/lit-
era.html.

[18] R. Thomsen, “Flexible ligand docking using evolutionary algorithms:
investigating the effects of variation operators and local search hybrids,”
Biosystems, vol. 72, no. 1-2, pp. 57–73, 2003.

[19] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Evolutionary Computation, 2004.
CEC2004. Congress on, vol. 2, 2004, pp. 1980–1987.

[20] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary
computation. IOP Publishing Ltd., 1997.

[21] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the
CEC 2005 special session on real-parameter optimization,” Nanyang
Technological University, Singapore and Kanpur Genetic Algorithms
Laboratory, IIT Kanpur, Tech. Rep., 2005.

[22] J. Peña, “Theoretical and empirical study of particle swarms with
additive stochasticity and different recombination operators,” in
Proceedings of the 10th annual conference on Genetic and evolutionary
computation, ser. GECCO ’08. New York, NY, USA: ACM, 2008,
pp. 95–102. [Online]. Available: http://doi.acm.org/10.1145/1389095.
1389109

[23] C.-Y. Lee and X. Yao, “Evolutionary programming using mutations
based on the lévy probability distribution,” Evolutionary Computation,
IEEE Transactions on, vol. 8, no. 1, pp. 1–13, 2004.

[24] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
Evolutionary Computation, IEEE Transactions on, vol. 3, no. 2, pp. 82–
102, 1999.

[25] D. Gehlhaar and D. Fogel, “Tuning evolutionary programming for con-
formationally flexible molecular docking,” in Evolutionary Programming
V: Proc. of the Fifth Annual Conference on Evolutionary Programming,
1996, pp. 419–429.

[26] O. Olorunda and A. P. Engelbrecht, “Measuring exploration/exploitation
in particle swarms using swarm diversity,” in Evolutionary Computation,
2008. CEC 2008.(IEEE World Congress on Computational Intelligence).
IEEE Congress on. IEEE, 2008, pp. 1128–1134.

[27] M. M. al-Rifaie and A. Aber, “Identifying metastasis in bone
scans with stochastic diffusion search,” in Information Technology in
Medicine and Education (ITME). IEEE, 2012. [Online]. Available:
http://dx.doi.org/10.1109/ITiME.2012.6291355

