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Abstract. This paper presents a novel reconstruction algorithm for bi-
nary tomography based on the movement of particles. Particle Aggre-
gate Reconstruction Technique (PART) supposes that pixel values are
particles, and that the particles can diffuse through the image, stick-
ing together in regions of uniform pixel value known as aggregates. The
algorithm is tested on four phantoms of varying sizes and numbers of
forward projections and compared to a random search algorithm and to
SART, a standard algebraic reconstruction method. PART, in this small
study, is shown to be capable of zero error reconstruction and compares
favourably with SART and random search.
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1 Introduction

Tomographic reconstruction is the process of inferring the internal structure of
an object from a set of projected images. The projected images are records of the
quantity of penetrating radiation that has passed through, or has been emitted
from the interior of, the object in question. There are many applications, ranging
from medical imaging (CT, SPECT, PET and MRI) [3, 4, 16] to oceanography
(seismic tomography) [14] and quantum tomography (quantum state tomogra-
phy) [5].

Although an exact reconstruction is possible by use of the inverse Radon
transform, in practice the discrete nature of the imaging, and the finite number
of available projections, mean that approximate, discrete, techniques must be
employed. The continuous density distribution of the object is modelled as a
grid of pixels and the projections are acquired in bins becasue cameras consist
of arrays of detectors of finite size [4].

Even after discrete modelling, the remaining mathematical problem may be
ill-defined due to underdetermination: the number of independent relationships
amongst the unknown quantities is fewer than their number. As a result, the
solution of the inverse problem is not unique, and indeed very many solutions
might exist.



This incompleteness of data arises from cost, time and geometrical concerns.
For instance, the importance of cost reduction in industrial applications results
in shortened scan duration and fewer projected images; similarly, in electron
tomography, the damage caused to the sample by the electron beam reduces the
number of collectable projections [13].

The classical filtered back projection [11, 7] technique is a relatively quick
and effective reconstruction procedure. However, increasing computation power
means that algebraic reconstruction techniques (algebraic-RT or ART) are gain-
ing eminence. This is due to ART’s potential for greater accuracy, albeit at
increased time of execution.

The first ART algorithm was a rediscovery [6] of the Kaczmarz method for
solving linear equations [10]. An improved Kaczmarz method for image recon-
struction, SART, (simultaneous-ART) was proposed by Andersen and Kac [1].
SART remains popular to this day and has been the subject of mathematical
analysis (for example, [9]).

Prior knowledge can inform algorithms and speed up computation. For exam-
ple, if it is known that the object is composed of just a few regions of homogenous
density, discrete tomography can be employed. The aim is to reconstruct an im-
age that is composed of just a few greyscale values. And, as an extreme instance
of discrete tomography, if just two greyscale values are assumed, correspond-
ing to the interior and exterior of the object, the problem is to find a binary
reconstruction [8].

The aim of this paper is to investigate a new binary reconstruction technique
based on the aggregation of particles. The idea is to suppose that pixel values
0 and 1 represent particles that may be absent or present in a particular cell
(a pixel), and for isolated particles to move freely until they meet, and there-
upon stick to, clusters of other particles. The underlying assumption is that the
preferred solutions to the inverse problem will be those solutions that are more
homogeneous.

The paper continues with an overview of tomography and of reconstruction.
Then, the aggregation algorithm, Particle aggregate-RT (PART) is specified; a
section detailing a sequence of experiments that tests and compares PART to
SART and to a random search on a number of phantoms (i.e. pre-prepared exact
images) follows. The results are then reported and evaluated. The paper ends
with a summary of the main findings and suggestions for future research.

2 Tomography and algebraic reconstruction

There are two important imaging modalities, parallel beam and fan beam to-
mography. In either modality, an array of detectors is rotated to lie at a number
of (usually) equally spaced angles in [0, π). Fig. 1 shows the two modalities and
the pixellated representation of the object. Ideally, if the detectors have perfect
collimators, each detector will record the amount of radiation received in a finite
width beam.



Fig. 1: Tomography geometry

Left: parallel beam geometry; right: fan beam geometry
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However, an approximate model of the physical measurement must be built in
order to formalise the mathematical reconstruction problem. This approximation
is called the forward model. Beams are typically modelled by parallel rays (Fig.
1 left). Each ray is incident on the centre of each detector or projection bin.
The imaging process is approximated by a projection matrix A ∈ Rm×n

≥0 where
m is the total number of rays collected (equal to the number of rays at each
projection angle multiplied by the number of projection angles) and n is the
number of pixels in the reconstructed image. If b ∈ Rm is a vector of detector
values, the continuous/discrete reconstruction problem can be stated as:

find x

{
∈ Rn

∈ {0, 1, . . . , k − 1}n, k > 1
such that Ax = b. (1)

The binary problem is k = 2 i.e. with x ∈ {0, 1}n.

The methods used to compute the entries Aij of the projection matrix vary. A
simple procedure is to count the number of pixels that each ray passes through.
The more refined line model uses the length of the intersection between the ray
and the pixel.

Since the equation Ax = b is, in general, underdetermined, it cannot be
inverted. Instead an approximate solution y must be obtained (for example,
by filtered back projection, or SART). This trial solution is forward projected
according to the measurement model:

Ay = c

with an associated lp error

ε(y) = ||b− c||p



where the lp, p ≥ 1, norm is defined

||v||p ≡
(∑

|x|p
) 1

p

.

An iterative scheme will produce a sequence of candidate solutions, y(k), k =
1, 2, . . ., of decreasing error.

3 Reconstruction by Particle Aggregation

In many applications, the reconstructed image is expected to consist of patches
of various sizes of uniform pixel value, since many physical objects of interest
consist of uniform structures. Non-uniform regions with randomly varying pixel
value would be construed as noisy and unphysical. Relevant reconstructed images
are therefore those with low entropy.

This observation suggests the following assumption: given a number of dis-
tinct candidate reconstructions, {y : Ay = c}, with identical error ε(y), the
preferred reconstruction is the one with the lowest entropy (or one of the recon-
structions of lowest entropy, in the case of non-uniqueness). It would clearly be
beneficial to equip a reconstruction algorithm with this assumption, under those
conditions where the assumption might be expected to hold.

The principle idea underlying the aggregation technique proposed in this pa-
per and motivated by the low-entropy assumption, is to suppose that pixel values
are mobile particles, moving from pixel to pixel. The low-entropy assumption is
implemented by requiring that particles stick together in clusters or aggregates
uniform pixel value.

A model of aggregation for any random deposition process that is dominated
by diffusive transport, for example electodeposition and mineral growth, was
proposed in 1981 by Witten and Sander [18]. Their model, known as Diffusion
Limited Aggregation or DLA, is remarkably simple: a particle is released from
a random point on a boundary and subsequently follows a random walk until it
strikes a stationary particle at some location within the enclosing boundary. The
walking particle sticks to the stationary particle and another particle is released.
Surprisingly complex dendrite-like clusters with fractal structure are formed by
repeated application of this simple rule.

The reconstruction problem is converted into particle aggregation with the
following correspondence:

• image x → configuration of particles,
• pixels → cells
• pixel values 1/0 → presence/absence of a single particle,
• image → a grid of cells.

Furthermore, an objective function

• error function → objective function



converts the growth model into an optimisation problem: only those aggregates
that lower the objective function are permitted to form.

A direct implementation of DLA as a reconstructive process would be very
expensive since a randomly walking particle might pass by many isolated cells
before arriving at a boundary cell; diffusion can be accelerated by causing a
particle to jump from cell a to a vacant cell b, picked uniformly at random
from all vacant cells. Although a jump has been made, the particle might not
necessarily ‘stick’.

Suppose a particle has jumped from a to b and that b is a boundary cell
of a particle cluster. (Note that the boundary might lie within the cluster i.e.
bounding a hole). We might suppose that whether the particle sticks or not to
the cluster is conditional on the number of occupied neighbours of the boundary
cell b relative to neighbour count for cell a, and on the fitness of the new config-
uration. There are a number of ways to deal with a particle that has jumped to
a vacant cell but does not stick. For example, it could simply return to a. These
modifications should ensure that particle diffusion builds aggregates which lower
overall entropy and image error.

With these considerations in mind, the Particle Aggregate Reconstruction
Technique (PART) can be specified. Algorithm 1 specifies an application of
PART to a single particle. Here, y is the reconstructed image, Select returns
pixels a, b ∈ y, a 6= b, such that a is occupied and b is empty. n is the number
of occupied cells in the neighbourhood (Moore or von Neumann) of a particular
cell and ε(a→ b) is the error of the new image with the pixel a set to zero and
pixel b set to 1. u is a sample drawn from U(0, 1) (the uniform distribution on
[0, 1]).

Particle Aggregation RT Algorithm 1

1: {a, b} = Select(y)
2: if n(a) ≤ n(b) OR u ∼ U(0, 1) < p1 then
3: if ε(a→ b) ≤ ε(y) OR u ∼ U(0, 1) < p2 then
4: move particle from a to b
5: end if
6: end if

The algorithm has two parameters p1 and p2. p1 governs the influence of the
local neighbourhood constraint: the requirement to move to a neighbourhood of
higher local particle density. p1 = 1 corresponds to a random search and the
neighbourhood constraint is ignored. A move a → b will always be attempted
even if the neighbourhood function n is lowered.

In contrast, p2 governs the influence of the global constraint on the particle
configuration as a whole. If p2 = 0, a move a → b will always be rejected if it
does not lower or equal the current error. The algorithm is greedy. If p2 > 0, the
algorithm is not greedy and a configuration with higher error will be accepted
with probability p2. Movement away from a local minima of ε can occur. In



principle, p2 might depend on the change in error (and on a steadily reducing
temperature parameter as in simulated annealing).

Algorithm 1 specifies a trial update of a single particle. Each application
incurs a cost of a single function evaluation (ε(y)). The algorithm is iterated
until zero error or until a set number of function evaluations (FEs) has been
achieved.

As stated by Reynolds [15], the three simple rules of interaction in flocks
or swarms are collision avoidance, velocity matching and flock centring. The
aggregating particles can be considered as individuals in a swarm. The dynamic
rules of particles swarms are of the form:

1. If too close or colliding to neighbouring particles, move away
2. Else if too far from neighbours, move closer.

where rule 1 opposes crowding and rule 2 brings the particles together in a
swarm. The single occupancy condition implements the anti-crowding rule, and
the (conditional) move to a neighbourhood of higher particle density, as mea-
sured by the neighbourhood function n implements rule 2. The error function
ε(y) imposes a global constraint on the swarm as a whole.

4 Experiments and results

This section presents a series of experiments to investigate the performance of
PART in binary image reconstruction. Three experiments were designed. The
first, and preliminary, experiment, aims at finding a suitable value for the local
constraint parameter p1 for a single phantom of one size only. The second ex-
periment investigates the convergence properties of PART and random search,
which can be seen as a limiting case of PART. The final experiment provides
a comparison between random search, the commonly used reconstruction algo-
rithm, Simultaneous Algebraic Reconstruction Technique (SART), and PART
with p1 set to the empirical value determined in the first experiment.

4.1 Methodology

Forward model The acquisition geometry used for the experiments is parallel
beam topology and the experiments use simulated objects (i.e. virtual phan-
toms). In all cases, the elements of the projection matrix were calculated from
the line model.

Phantoms Phantoms 1 and 2 (see Fig. 2) are commonly used in binary tomog-
raphy [17] and the third and fourth phantoms resemble the Jaszczak phantoms
used to calibrate the SPECT and PET scanning machines. The size of all the
phantoms is 512 × 512. To carry out the experiments in images with different
sizes, the phantoms or reference images have been scaled to create images of
varying sizes (namely, 32× 32, 64× 64 and 128× 128).



PART PART is used with Moore neighbourhood. There are a number of alter-
natives for line 1 of Algorithm 1, the selection step in PART. The purpose of this
step is to find an occupied cell, a, and a vacant cell, b. The following experiments
use random selection: a and b are selected uniformly at random from the sets of
all occupied/unoccupied cells. A list implementation would have been efficient,
but since the numbers of occupied/unoccupied cells is roughly similar, uniform
sampling over the entire grid y was used due to the ease of implementation and
small time overhead. Algorithm 2 specifies Select; U(y) is a uniform random
selection of a single cell from the grid y. The value of the global constraint
parameter p2 was fixed, in all experiments, to zero.

Select Algorithm 2

1: procedure Select(y)
2: a ∼ U(y)
3: while a is vacant do
4: a ∼ U(y)
5: end while
6: b ∼ U(y)
7: while b is occupied do
8: b ∼ U(y)
9: end while

10: return {a, b}
11: end procedure

Random Search (RS) For the purposes of these experiments, random search
is defined as the PART algorithm with the neighbourhood parameter p1 set
to 1 with the consequence that a particle will always attempt a move to an
unoccupied cell b even if the neighbour count of b, n(b), is less than n(a).

Fig. 2: Phantom images used in the experiments

(a) Phantom 1 (b) Phantom 2 (c) Phantom 3 (d) Phantom 4



SART The implementation of SART used here was based on Andersen and
Kac’s algorithm, [1]. The projection angles were selected uniformly at random
([2]). The value of the relaxation parameter λ was set to 1.9 in accordance with
the recommendation of [12].

SART needs to be modified for binary reconstruction since in the unaltered
form SART produces a continuum of pixel values. The reconstructed image also
needs to be normalised in order to make error comparisons. The following mod-
ifications were made: any negative pixel values occurring after updating at any
angle were set to zero; the final image y after updating all projection angles was
normalised so that the total pixel value count of the phantom image and the
reconstructed image were equal; y was thresholded at the average pixel value
so that values below the average were set to zero, values above or equal tot he
average were set to 1.

Measure The principle performance measure is the l1 norm, ε(y) = (
∑
|b− c|)

where, for the phantom image x,Ax = b and for the reconstructed image,Ay = c.
A secondary measure, used for comparison amongst iterated algorithms, is the
number of evaluations of ε (function evaluations or FEs) needed to attain a given
error.

4.2 Experiment I: neighbourhood constraint parameter, p1

The aim of this preliminary experiment is to find a suitable value for the pa-
rameter p1 which determines the probability of ignoring the neighbourhood con-
straints. Phantom 3 is used in this experiment (see Fig. 2c), with dimension
32 × 32 and 32 angles of projections. The graphs in Fig. 3 show the result of a
typical PART run. The termination condition is 50, 000 FEs.

As shown in Fig. 3(b), p1 = {0.1, 0.2, 0.3} produces zero error, and when the
number of FEs needed to achieve this error is taken into account (Fig. 3(a)), the
most suitable value is p1 = 0.1.

4.3 Experiment II: PART and RS convergence

Fig. 4 reports on a typical run of PART at p1 = 0.1, p2 = 0 and RS (p1 = 1, p2 =
0) on phantoms of size 64 × 64 with 32 angles (64 × 64 × 32). The termination
condition is zero error or 50, 000 FEs.

As shown in the graphs in Fig. 4, PART outperforms RS before the maximum
allowed iterations for phantoms 1-3. RS appears to be superior for phantom 4
for large numbers of FE’s (beyond 30000). This is possibly due to the presence
of isolated pixels with value 1 in the phantoms as a result of scaling down the
image to 64×64; PART will struggle to place a particle on an isolated (n(b) = 0)
cell.

The PART convergence curves begin to level off at about 10000 particle
updates, i.e. at about 8% of the number of measurements (642 × 32).



Fig. 3: Error and function evaluations (FEs) with varying p1 values
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Fig. 4: Convergence plots of PART and RS algorithms
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4.4 Experiment III: PART, RS and SART comparisons

The aim of this experiment is to compare PART, RS and SART reconstructions
of the four phantoms for various sizes and numbers of projection angles. 30
runs were conducted for each phantom and for the each algorithm in order to
acquire adequate statistics. The termination condition for each run is zero error



or 50, 000 FEs. (For the purposes of this study, the number of FEs does not vary
with the number of measurements.)

Figs. 5 and 6 (and Table 2) illustrate the performance of the three algorithm
in two separate sets of experiments, using phantoms of size 32 × 32 with 16
projections (32 × 32 × 16) and 64 × 64 with 32 projections (64 × 64 × 32) re-
spectively. As shown in the figures, increasing the size of the phantoms, PART
distances itself from RS and SART in terms of the error value and outperforms
both algorithms (with the exception of phantom 4 for the reason stated before).

Fig. 5: Error values in PART, RA and SART (32× 32× 16)
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In order to conduct the statistical analysis and identify the presence of any
significant difference in the performance of the algorithms, Wilcoxon 1× 1 non-
parametric statistical test is deployed. Table 1 confirms the findings reported
and shows that in the experiments for 64× 64× 32, PART significantly outper-
forms RS in all cases (except in phantom 4); additionally it is shown that PART
significantly outperforms SART in all cases in both 32×32×16 and 64×64×32
experiments. While RS outperforms SART in all cases in 32 × 32 × 16 exper-
iments, with scaling the image to 64 × 64 the results are reversed. Phantom 4
remains the only case where RS significantly outperforms both PART and SART
algorithms.



Fig. 6: Error values in PART, RA and SART (64× 64× 32)
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Table 1: Statistical analysis of the performance of the algorithms
Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the error difference between
each pair of algorithms is significant at the 5% level, the pairs are marked. X–o shows
that the left algorithm is significantly outperforming its counterpart algorithm; and
o–X shows that the right algorithm is significantly better than the one on the left. The
figures, n – m, in the last row present a count of the number of X’s and o’s in the
respective columns.

(a) 32× 32× 16

PART – RS RS – SART PART – SART

Phantom 1 X – o X – o X – o

Phantom 2 – X – o X – o

Phantom 3 – X – o X – o

Phantom 4 o – X X – o X – o∑
1 – 1 4 – 0 4 – 0

(b) 64× 64× 32

PART – RS RS – SART PART – SART

Phantom 1 X – o o – X X – o

Phantom 2 X – o o – X X – o

Phantom 3 X – o o – X X – o

Phantom 4 o – X X – o X – o∑
3 – 1 1 – 3 4 – 0



Table 2: Comparing PART, RS and SART in 32× 32× 16 and 64× 64× 32

(a) 32× 32× 16

Min Max Median Mean StDev

Phantom 1

PART 0.00 30.56 0.00 3.02 9.23

RS 45.95 133.03 89.52 90.75 18.77

SART 64.29 240.69 104.42 118.00 44.02

Phantom 2

PART 53.17 188.90 101.89 102.87 27.79

RS 50.83 158.18 112.56 112.07 24.47

SART 225.69 589.04 398.36 399.45 88.04

Phantom 3

PART 0.00 129.82 29.06 32.15 31.06

RS 0.00 42.60 22.03 21.79 11.58

SART 241.41 417.06 361.53 343.15 54.09

Phantom 4

PART 0.00 115.11 24.43 31.55 33.02

RS 0.00 21.07 0.00 1.65 5.13

SART 46.63 62.98 62.98 62.44 2.98

(b) 64× 64× 32

Min Max Median Mean StDev

Phantom 1

PART 0.00 59.59 0.00 13.90 25.63

RS 1571.18 1831.95 1745.67 1740.33 68.06

SART 63.41 539.67 160.31 194.65 102.15

Phantom 2

PART 61.88 386.65 212.50 215.76 63.26

RS 1841.01 2164.48 1943.93 1972.55 85.57

SART 1096.49 2831.89 1537.65 1659.28 386.71

Phantom 3

PART 0.00 163.67 59.62 52.45 42.64

RS 604.34 864.29 709.08 708.47 53.00

SART 384.86 929.52 641.62 640.78 106.97

Phantom 4

PART 794.81 1262.07 1017.73 1021.08 93.57

RS 623.06 995.50 854.67 849.62 88.21

SART 3626.21 4663.74 4222.92 4142.60 325.57

In the previous sections of the paper, the success of RS over PART and SART
was cautiously attributed to the presence of isolated pixels of value 1 throughout
phantom 4 due to scaling down the original phantom.

To put this hypothesis to test, another experiment is designed which uses a
larger phantom size of 128×128 with 16 number of angles in order to evaluate the
performance of the algorithms. The results of this experiment is shown in Fig.



7 and Table 3. The results show, that while RS still outperforms SART, PART
which is a simple neighbourhood aware algorithm, exhibits the best performance
over all the 30 trials with statistically significant difference (see Table 4).

Fig. 7: Error values in reconstructing phantom 4 using PART, RA and SART in
128× 128× 16
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Table 3: Reconstructing phantom 4 using PART, RS and SART in 128×128×16

Min Max Median Mean StDev

Phantom 4

PART 2398.79 2719.48 2555.81 2564.35 84.00

RS 3469.15 3677.52 3589.69 3584.50 58.11

SART 24387.04 30642.35 27009.73 27110.61 1867.59



Table 4: Statistical analysis of the performance of the algorithms on phantom 4
in 128× 128× 16

128× 128× 16

PART – RS RS – SART PART – SART

Phantom 4 X – o o – X X – o∑
1 – 0 0 – 1 1 – 0

5 Conclusions

This paper has proposed a novel method of binary tomographic reconstruction.
PART – particle aggregate reconstruction technique – is based on the idea that
an image can be interpreted as a grid of cells populated by particles. Pixel values
represent cell occupancy; particles are mobile and diffuse throughout the grid
by random jumps, preferably landing adjacent to regions of increased particle
density. The algorithm has two free parameters, a neighbourhood constraint
probability, p1, that controls the preference for jumping to increased density
locations, and a global constraint p2 that determines how likely the particle is
likely to remain at a target cell if the reconstructed image error were to increase
by the jump in question.

A series of experiments on four phantoms ranging in size from 32 × 32 to
128× 128 suggest that, for p2 = 0 (i.e. no uphill motion in the fitness landscape
is allowed), and in the context of the specific trials conducted in this study:

– p1 should be set to 0.1. This means that 10% of jumps are to locations of
decreased neighbourhood particle density.

– PART converges rapidly when compared to random search for phantoms
with all nonzero pixel values occuring in connected regions. And in the case
that there are isolated nonzero values pixels, PART will find better recon-
structions at fewer iterations.

– PART performs (statistically) significantly well when compared to random
search and a standard algebraic reconstruction technique for 32 × 32 and
64× 64 phantoms, except for the case of isolated nonzero pixel values;

– however for a larger (128 × 128) phantom with proportionally fewer angles
of projection, PART wins out over random search and SART

The dominance of PART – or as its limiting case – random particle diffusion
over a standard algebraic technique is suggestive. The algorithm is intuitive, and
easily implemented.

However the findings listed above must be tempered with a few provisos. The
technique requires many iterations (although the required number is less than the
number of linear equations) and it remains to be seen if a more efficient selection
mechanism for jumping can provide tolerable run times for large images. The
(p1, p2) ∈ [0, 1]2 parameter plane has not been explored and it is expected that



some fitness landscape climbing would improve performance. The test phantoms
used in this study are of limited size and diversity; larger and physically realistic
phantoms and object images should be examined. Binary-PART would benefit
from a systematic study of the parameters over a wide range of conditions.

This paper has considered binary tomography and the question whether ag-
gregation by particle diffusion can be extended to the general discrete case, is
the topic of an ongoing research.
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