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Abstract 

Objectives: To utilized novel methods to examine age-associations across an integrated brain network in 

healthy older adults (HOA) and individuals with late-life depression (LLD). Graph theory metrics describe the 

organizational configuration of both the global network and specified brain regions. Design: Cross-sectional 

data were acquired. Graph theory was used to explore diffusion tensor imaging derived white matter networks. 

Participants: 48 HOA and 28 adults with LLD were recruited from the community. Measurements: Global and 

local metrics in prefrontal, cingulate and temporal regions were calculated. Group differences and associations 

with age were explored. Results: Group differences were noted in local metrics of the right prefrontal and 

temporal regions, no significant differences were observed on global metrics. Local (not global) metrics were 

associated with age differently across groups. For HOA, local metrics across all regions correlated with age 

whereas in LLD correlations were only observed within temporal regions. In keeping with hypothesized regions 

impacted by LLD, stronger hubs in right temporal regions were observed among HOA whereas LLD individuals 

were characterized by robust hubs in frontal regions. Conclusion: We demonstrate widespread age-related 

changes in local network properties among HOA with different and more restricted local changes in LLD. 

Although a preliminary analysis, different patterns of correlations in local networks coupled with equivalent 

global metrics may reflect altered local structural brain networks in patients with LLD.  
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Objective 

Healthy aging and late life depression (LLD) are associated with significant changes in the brain 

in both gray and white matter1-5.  Studies have explored individual brain regions and specific 

white matter tracts, however few studies have utilized novel magnetic resonance imaging (MRI) 

analysis methods that incorporate graph theory. Graph theory enables examination of the whole 

brain’s organizational properties by modeling it as an integrated network6, 7. In graph theory, a 

network is a set of nodes with connections (edges) between them. Various metrics have been 

proposed (see Rubinov & Sporns for a detailed review7) and it has been suggested that an 

optimized network can be described as a “small-world-network”, having high network efficiency 

and short path lengths6, 8. Thus, in a well-organized network such as the human brain one may 

identify a number of regions as hubs, i.e. regions that are highly connected internally but also 

with long range connections externally to other regions or hubs. Effective networks will be 

formed by a complex combination of efficiency and strength of connections both between and 

within brain regions; too many connections may be just as detrimental to a network as too few 

(see Figure 1 for description of metrics used in this study).  

 

To date, brain imaging studies applying graph theory across the lifespan, have not provided 

consistent results and as yet, little work has been done to integrate findings into a cohesive 

theory. For example, in a graph analysis of gray matter volume across the lifespan, Wu and 

colleagues9 demonstrated that the gray matter network became more widely distributed from 

young adulthood through middle-age, and then became more localized in old-age. The authors 

describe this U-shaped curve as representing the development of a mature system followed by 

the randomization of that system as age-related decline impacts the brain. Although this 

description maps well onto the development and decline of brain networks, it does not reflect 

the pattern of cognitive changes observed across the lifespan, where optimal performance is 

generally observed in early adulthood. Some graph analyses have demonstrated less efficient 
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global and local networks among older versus younger adults for both gray matter volume10 and 

white matter based on diffusion tensor imaging (DTI) whole brain tractography11. In contrast 

another structural connectivity study using DTI identified equivalent global efficiency but 

reduced local efficiency12. The authors suggest that this preserved global but decreased local 

efficiency may represent adaptation toward the use of alternative networks among older 

adults12. Despite these initial analyses of normal aging, little work has been done to understand 

how measures of network integrity may be impacted by current illness such as depression in 

aging. 

 

A recent white matter graph study of remitted late-onset LLD identified reduced global efficiency 

and increased path length suggesting less efficient networks in recovered patients compared to 

healthy adults13. An earlier study from our group examining gray matter volume inter-

correlations (rather than a white matter brain network as described in the current analysis), 

identified a similar pattern of lower global efficiency and higher global path length in LLD 

compared to a comparison group, as well as a higher global clustering coefficient in LLD14. 

Unfortunately the available methods precluded investigating individual differences. This study 

will expand on these structural network findings and examine individual differences in graph 

theory metrics not only as they relate to LLD and healthy older adults (HOA), but also how age 

may impact these findings. Here we use DTI whole brain tractography-derived white matter 

structural networks to examine group differences between LLD patients and HOA, associations 

with age are also examined.  We focus on regions of interest in frontal, temporal and cingulate 

cortices as previous studies of the role of white matter underlying LLD and mood regulation 

have implicated white matter in these areas15-19. In addition, white matter tracts such as the 

uncinate fasciculus connecting frontal and temporal regions and the cingulum, the white matter 

tract that underlies the cingulate cortex3, 15, 20, 21. We hypothesize that there will be lower network 

Efficiency, longer Path Length, less Centrality and greater Vulnerability in patients with LLD 
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compared to HOA in regions important for mood regulation or commonly affected in major 

depressive disorder, such as the prefrontal and cingulate cortex and the temporal lobes1, 19, 22-24. 

Furthermore we hypothesize that network efficiency will reduce with increasing age.  

 

Methods 

Participants and Procedures  

Data were collected as part of a larger research study investigating LLD at the University of 

Illinois at Chicago (UIC). Individuals age 60 and older were recruited via community outreach 

(e.g., newspaper, radio, and television advertisements) and relevant outpatient clinics within the 

School of Medicine (e.g., mood and anxiety, geriatrics). The study was approved by the UIC 

Institutional Review Board and conducted in accordance with the Declaration of Helsinki. 

 

Participants underwent a preliminary telephone screen. Exclusion criteria consisted of current or 

past history of brain disorders (i.e., dementia, stroke, seizure, head injury, loss of 

consciousness, etc.), history of substance abuse or dependence, an Axis I psychiatric disorder 

diagnosis (other than major depression for the LLD group), psychotropic medication use 

including antidepressant medications and the presence of metallic implant(s) that would 

preclude MRI. Thus, all study participants, including those diagnosed with major depression 

were free of any antidepressant medication for at least two weeks in order to study depressed 

mood in an untreated state. 

 

After passing the telephone screen, participants were scheduled for a more detailed evaluation 

including cognitive, i.e., Mini-Mental State Examination (MMSE25 and affective, i.e., Structured 

Clinical Interview for DSM-IV (SCID26 screens for final inclusion/exclusion determination. 

Screening measures were administered by a trained research assistant, followed by an 

evaluation by a board certified (AK) or board eligible (OA) psychiatrist who completed the 
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Hamilton Depression Rating Scale (HDRS27.  All raters were blind to telephone screen 

information. Informed consent was obtained from all participants. After eligibility was confirmed, 

qualified participants were scheduled for a second visit during which they completed a 

neuropsychological assessment (not reported). A third visit involved MRI acquisition. 

 

Final inclusion criteria for adults with LLD included a diagnosis of major depressive disorder 

based on the SCID and a score >15 on the 17-item HDRS.  Healthy older adults (HOA) 

participants required an absence of depressive symptoms based on the SCID and a score <8 

on the HDRS. All participants regardless of group, had an MMSE score > 24, had scores within 

the normal range on the standardized neuropsychological assessment, and were native English 

speakers. The HOA group demonstrated no history of neurological or psychiatric illness, and no 

evidence of cognitive deficits on standardized neuropsychological assessments (not reported 

here). History of stable (e.g., diabetes, hypertension) or remitted medical illness (e.g., cancer) 

was not an exclusionary factor.   

 

One hundred and forty-four individuals attended initial screening. Thirty-four individuals were 

excluded from analysis: 15 had past substance abuse or dependence (HOA=4, LLD=11); five 

had English as a second language (HOA=4, LLD=1); three were on contra-indicative medication 

(HOA=1, LLD=2); five had contra-indicative comorbidities (HOA=1, LLD=4); four individuals had 

sleep apnea (HOA=3, LLD=1), two had previous head trauma (HOA=1, LLD=1). Of these 110 

individuals, 76 had complete imaging data available (T1-weighted and DTI); the final sample 

included 28 adults with LLD and 48 HOA.  Note, there is substantial overlap with the sample of 

participants described by a previous analysis of gray matter network14.  

 

Neuroimaging Protocol  



 

7 
 

Brain MRI were acquired on a Philips 3.0T Achieva scanner (Philips Medical Systems, Best, 

The Netherlands) using an 8-channel SENSE (Sensitivity Encoding) head coil. Participants were 

positioned comfortably on the scanner bed and fitted with soft ear plugs; foam pads were used 

to minimize head movement. Participants were instructed to remain still throughout the scan. 

High resolution three-dimensional T1-weighted images were acquired with a MPRAGE 

(Magnetization Prepared Rapid Acquisition Gradient Echo) sequence (field of view: 

FOV=240mm; 134 contiguous axial slices; TR/TE=8.4/3.9ms; flip angle=8o; voxel 

size=1.1X1.1X1.1mm). DTI images were acquired using single-shot spin-echo echo-planar 

imaging (EPI) sequence (FOV=240mm; voxel size=0.83X0.83X2.2mm; TR/TE=6,994/71ms; Flip 

angle=90o). Sixty seven contiguous axial slices aligned to the anterior commissure–posterior 

commissure (AC-PC) line were collected in 32 gradient directions with b=700s/mm2 and one 

acquisition without diffusion sensitization (B0 image). Parallel imaging technique was utilized 

with factor at 2.5 to reduce scanning time to approximately 4 minutes. The acquisition of these 

images was part of a larger protocol.  

 

Image Analysis  

To generate brain network data, a pipeline was constructed which integrates multiple image 

analysis techniques. Diffusion weighted images were eddy current corrected using the 

automatic image registration tool in DTI-Studio (http://www.mristudio.org28 by registering all 

diffusion-weighted images to their corresponding b0 images. An eddy current correction 

technique using affine transformation was performed (rotation, translation, scaling and shear, 

12-parameters). This was followed by the computation of diffusion tensors then deterministic 

tractography using Fiber Assignment by Continuous Tracking (FACT) algorithm built into the 

DTI-Studio program. For each subject, tractography was first performed by tracking the whole 

brain, initiating tracts at each voxel. Fiber tracking was stopped when FA value falls below 0.15 

or a turning angle becomes larger than 60°.  
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T1-weighted images were used to generate label maps using the FreeSurfer image analysis 

suite (http://surfer.nmr.mgh.harvard.edu/) for volumetric segmentation29-31. Each label map is 

composed of 87 different gray matter regions of interest (ROIs), which include cortical and 

subcortical regions as well as the brainstem and cerebellum.  

 

Brain gray matter structural networks were generated by counting the number of reconstructed 

streamlines connecting every pair of gray matter ROIs (i.e. the “nodes”). We investigated 

several hubs of interest, which are areas hypothesized to be important for mood regulation or 

are often affected in LLD1, 19, 22-24. To this end, hubs of interest were constructed by combining 

individual FreeSurfer areas of interest as follows: prefrontal cortex (PFC) – orbitofrontal cortex, 

inferior frontal gyrus and rostral division of the middle frontal gyrus; cingulate Cortex – rostral 

anterior, caudal anterior and posterior divisions; temporal – entorhinal cortex, parahippocampal 

gyrus and middle temporal gyrus. Regions were combined in order to investigate the integral 

role of these hubs of interest with their sub-components combined, and to reduce the number of 

comparisons. The resulting matrices were then analyzed using a set of Matlab-based functions 

implemented in the Brain Connectivity Toolbox (http:// brain-connectivity-toolbox.net/) to yield 

several graph theory metrics. In order to minimize multiple comparisons metrics were carefully 

selected to represent the network at both the global and local level, as well as describing how 

important a region is for the network as a whole and the connections between regions, see 

Figure 1. Global measures are reported for the normalized clustering coefficient (Gamma), 

normalized path length (Lambda) and global efficiency (Eglobal). Local measures reported are 

Centrality, Path Length and Vulnerability.  

 

Statistical Analyses  

http://surfer.nmr.mgh.harvard.edu/
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All statistical analyses were performed in SPSS (PASW, version 18.0.SPSS, Chicago, IL). 

Group differences in both demographics and network metrics were examined using ANOVA and 

Chi-Squared, as appropriate. ANCOVA was used to examine group differences in global and 

local graph theory metrics, with age and sex included as covariates. Partial correlations were 

performed to explore associations between age and graph theory metrics controlling for sex, for 

each group separately. For the local metric analyses, false discovery rate (FDR; q<0.30 for false 

discovery rate bounds32, 33) was used to control for type I error rate for multiple comparisons.  

 

Results 

Demographics 

There were no significant differences between the groups in either highest education level (LLD: 

mean=15.18 (3.29); HOA: mean=14.90 (2.90); F(1,74)=1.41, p=.698)  or sex (LLD: 

males=28.6%; HOA: males=37.5%; X2=.626, p=.429). The HOA group were significantly older 

than the LLD group (LLD: mean=65.29 (7.19); HOA: mean=68.75 (5.77); F(1,74)=.5.31, 

p=.024). As expected, groups differed on HDRS scores. See Table 1 for demographic details.  

 

Sex differences 

Although sex differences between the groups were not observed, the number of males in both 

groups was fewer than the number of females (HOA: males=18; females=30; LLD: males=8; 

females=28). For the LLD group in particular the uneven group and small n means comparison 

of sex differences should be treated with caution. Sex differences for each group were explored 

with ANOVA, see Supplementary Table 1. In the LLD group males demonstrated more efficient 

networks than females, but no sex differences were observed in the HOA group. To control for 

the different pattern of associations which may be due to the different statistical power in each 

group, sex was included as a covariate in further analysis.  
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Group differences 

Due to the reported group differences in age and the sex differences on imaging metrics (as 

described above), these variables were included as covariates in the analyses.  

Global Measures 

ANCOVA did not reveal any significant group differences between the groups on any global 

measure; see Supplementary Table 2 for details.  

Local Measures 

ANCOVA (controlling for age and sex) identified group differences in the right PFC and right 

temporal regions. Specifically, Vulnerability was significantly higher in the right PFC in the LLD 

group compared to HOA. In contrast Vulnerability in the right temporal region was higher among 

HOA compared to the LLD group. Also in the right temporal region, Centrality was significantly 

lower in the LLD group compared to HOA. These differences remained significant after FDR 

correction. See Table 2 for details.  

 

Correlations with Age  

Given sex differences on these metrics and the lack of statistical power to split the groups for a 

depression by sex consideration of age associates, sex was included as a control variable in the 

following analysis.  

Global Measures  

No significant correlations were observed between global network measures and age in either 

group (controlling for sex).  

Local Measures  

Correlations were performed separately for HOA and LLD individuals controlling for sex, see 

Table 3 for details. HOA: After FDR, age correlated significantly with Path Length metrics in 

bilateral PFC and temporal lobes and right cingulate.   
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LLD: After FDR, age correlated with bilateral Path Length and right centrality in the temporal 

lobe.  

 

Conclusions 

We analyzed structural brain networks of older adults with and without depression, assessing 

associations with age. Differences between individuals with LLD and HOA were observed for 

local metrics in right PFC and temporal regions particularly for Vulnerability. Vulnerability in the 

right PFC was higher in the LLD group compared to the HOA; whereas in the right temporal 

region Vulnerability was higher among HOA: indicating that for LLD individuals frontal regions 

are vital to the efficiency of the network, whereas in HOA temporal regions are more important. 

Although a preliminary analysis, this suggests that the network that supports functional 

operations is organized differently in LLD compared to HOA. Results presented here show 

similarities to our previous findings, despite using different methods and examining different 

brain tissue. In both Ajilore and colleagues’ examination of inter-correlations between gray 

matter volumes and the current investigation of white matter, stronger hubs in right temporal 

regions are observed among HOA whereas LLD individuals are characterized by robust hubs in 

frontal regions14.   

 

In the current study, patients with LLD have a network that is globally as efficient as that of 

HOA, unlike findings from a few previous studies however there are key differences in 

participants and study design13, 14. Although measuring white matter networks in a similar 

sample size, Bai and colleagues examined remitted late-onset LLD patients, compared to the 

currently depressed sample including both early- and late-onset LLD in this study13. Thus 

differences in results may reflect the dependence of network properties on current mood state, 

as well as the onset or illness duration. Although results here are preliminary, these findings 

may suggest that reorganization of brain networks is occurring in subjects with LLD. One 
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possible explanation for such reorganization is that some form of compensation may have taken 

place, as has been hypothesized in aging12, with the local network being restructured to 

maintain function in the face of brain changes associated with LLD. Our results suggest that in 

LLD individuals may utilize frontal regions to support function rather than relying on temporal 

regions (as in HOA). This may indicate that the reduced efficiency of the temporal lobe often 

observed in depression34, 35, leads to a reliance on more distributed possibly less efficient 

networks.  

 

Significant correlations were observed between local metrics and age particularly among 

healthy older adults, whereas no such associations were observed in global metrics. Although 

two previous studies have identified age-related declines in global efficiency in healthy aging10, 

11, one other study identified a similar pattern to that reported here – i.e., no age-related global 

effects but significant local associations with age12. Additionally, different patterns of correlations 

were observed between groups when exploring the relationship between age and local network 

metrics. Age effects in the HOA group were widespread across the whole brain as reported 

previously11; with longer Path Length in frontal, cingulate and temporal regions associated with 

older age. These prevalent age effects may reflect age-related cortical disconnection and 

contribute to the cognitive changes observed with normal aging36-38. In contrast among LLD 

patients, older age was positively correlated with metrics only in the temporal region. This 

pattern suggests that in LLD the network properties of the temporal lobe is impacted by disease-

age interactions39, 40, instead of a more widespread pattern observed among HOA. This is 

consistent with a previous study suggesting that whereas the dorsolateral prefrontal cortex 

appears to respond to treatment, other brain regions are not treatment responsive and may 

represent underlying brain dysfunction in depression41. 
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Results in this study should be carefully interpreted in the context of study limitations. Graph 

theory methods have only recently been applied to examine brain networks and the optimal 

combination of image acquisition protocol and pre/post processing techniques have yet to be 

established. While these results contribute to the growing literature, the lack of a “gold standard” 

for comparison means that they should be interpreted thoughtfully and with attention to new 

findings as well as the field as a whole. Despite this caveat, we demonstrated findings similar to 

those reported in studies using different graph theory methods; moreover the current method 

builds on our previous study by examining white matter networks (compared to previous gray 

matter analysis), and allows us to examine individual differences and correlations with age not 

possible in the previous analysis12, 14. DTI also has limitations including the possibility of 

spurious streamlines that may not be supported by evidence. Moreover, the graph-theoretical 

analyses similar to our pipeline implementation have been shown to be dependent on the 

streamline reconstruction technique 42, the choice of neuro-anatomical atlases for the definition 

of the “hubs”43, and different matrix normalization strategies44. Also, in this study we used 12-

parameter affine transformations for realigning the MPRAGE and DTI spaces, which only 

incompletely corrects for B0 inhomogeneity-induced geometric distortions. In terms of the 

sample, the groups were not large, had different statistical power due to uneven sample sizes 

and included smaller numbers of males than females. Within the LLD group a heterogeneous 

sample of late-onset and early onset patients was included and due to sample size, differences 

between age-of-onset groups could not be explored.  

 

To conclude, in this preliminary study we demonstrate a seemingly preserved global network in 

LLD, but with local network susceptibilities that differ between LLD and HOA. Furthermore, 

widespread age associations were noted in the HOA group, as opposed to more localized age-

related changes in the LLD group. Future applications of this method to larger samples and 
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incorporating cognitive function may clarify whether results reflect successful adaptation in LLD 

patients or altered structural brain networks that are not functionally beneficial.   
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Table 1: Demographic Information and Group Differences.   

 HOA 

N=48 

LLD 

N=28 

Group differences 

Age - Mean (sd) ± 68.75 (5.77) 65.29 (7.19) F=5.31, df=1,74, p=.024* 

Sex – N (m,f)+ 18,30 8,20 X2=.626, df=1,p=.429 

Highest Education Level in Years 
- Mean (sd)± 

14.90 (2.90) 15.18 (3.29) F=.152, df=1,74, p=.698 

HDRS - Mean (sd) 

Range± 

1.60 (1.60) 

0-6 

18.57 (2.73) 

15-25 

F=1160.12, df=1,74, 
p<.001** 

*significant at 5% level; **significant at 1% level; Statistical analysis: ±ANOVA; +Chi-square.  
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Table 2: Mean and Standard Deviations for Local Measures by Group; ANCOVA controlling for age and 

sex 

 Right Left 

 Mean (SD) ANCOVA 

(df=1,72) 

FDR  Mean (SD) ANCOVA 

(df=1,72) 

 HOA LLD   HOA LLD  

PFC 182.36 238.60 F=3.36  240.35 244.08 F=.102 

Centrality (99.87) (140.38) p=.071  (124.75) (163.38) p=.751 

 .012 .012 F=.103  .013 .012 F=.172 

Path length (.003) (.002) p=.749  (.002) (.003) p=.679 

 .003 .006 F=4.36  .005 .006 F=.001 

Vulnerability (.005) (.006) p=.040 * q=.28 (.005) (.006) p=.973 

Cingulate 133.52 150.02 F=.417  130.94 131.22 F=.002 

Centrality (103.38) (113.35) p=.520  (84.35) (93.87) p=.969 

 .012 .011 F=.206  .011 .011 F=.570 

Path length (.003) (.003) p=.651  (.002) (.002) p=.453 

 .002 .003 F=.910  .002 .002 F=.001 

Vulnerability (.005) (.005) p=.343  (.004) (.005) p=.975 

Temporal 136.20 82.62 F=6.22  108.28 79.81 F=3.31 

Centrality (97.72) (80.19) p=.015 * q=.16 (98.44) (84.46) p=.073 

 .019 .018 F=.017  .018 .018 F=1.66 

Path length (.007) (.004) p=.896  (.005) (.005) p=.201 

 .001 -.002 F=7.34  -.001 -.002 F=1.52 

Vulnerability (.005) (.004) p=.008 ** q=.16 (.005) (.004) p=.222 

N 48 28   48 28  

*significant at 5% level; **significant at 1% level. Items in bold remain significant after FDR correction (q<.3); 

FDR correction was applied to the 18 comparisons included in the table above.  
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Table 3: Correlations between Local Metrics and Age for both groups controlling for sex.   

 

HOA LLD 

 Right Left Right Left 

 Correlation FDR Correlation FDR Correlation FDR Correlation FDR 

PFC r=.071  r=-.144  r=-.119  r=-.298  

Centrality p=.638  p=.344  p=.556  p=.131  

 r=.426  r=.371  r=.274  r=.295  

Path length p=.003 ** q=.018 p=.010 * q=.036 p=.167  p=.136  

 r=.092  r=-.221  r=-.113  r=-.270  

Vulnerability p=.540  p=.136  p=.575  p=.174  

Cingulate r=.001  r=.274  r=.146  r=-.213  

Centrality p=.944  p=.062  p=.468  p=.286  

 r=.444  r=.259  r=.236  r=.233  

Path length p=.002 ** q=.018 p=.079  p=.236  p=.243  

 r=.089  r=.229  r=.083  r=-.032  

Vulnerability p=.553  p=.122  p=.680  p=.874  

Temporal r=.114  r=-.336  r=-.401  r=-.224  

Centrality p=.444  p=.021 * q=.063 p=.038 * q=.228 p=.261  

 r=.565  r=.402  r=.476  r=.654  

Path length p<.001 ** q<.001 p=.005 ** q=.023 p=.012 * q=.108 p<.001 ** q=.004 

 r=.123  r=-.217  r=-.379  r=-.180  

Vulnerability p=.409  p=.143  p=.051  p=.370  

 N=48 (df=45)  N=28 (df=25)  

Partial correlation controlling for sex. *significant at 5% level; **significant at 1% level. Items in bold remain 

significant after FDR correction (q<.3); FDR was applied to the 18 correlations for the HOA; and separately for 

the 18 correlations for the LLD group.  
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Supplementary Table 1: ANOVA to examine sex differences across Global and Local metrics for LLD 

and HOA.   

 

 HOA (df=1,46) LLD (df=1,26) 

Gamma F=.534, p=.468 F=1.05, p=.315 

Lambda F=.368, p=.547 F=.072, p=.791 

Eglobal F=.338, p=.564 F=7.04, p=.013 (M>F) 

 Right  Left Right  Left 

 ANOVA ANOVA ANOVA FDR ANOVA FDR 

PFC       

Centrality  F=.561, 
p=.458 

F=.219, 
p=.642 

F=.581, 
p=.453 

 F=.242, 
p=.627 

 

Path Length F=.591, 
p=.446 

F=.464, 
p=.499 

F=16.02, 
p<.001 **  

q=.008 

(F>M) 

F=11.86, 
p=.002 **  

q=.009 

(F>M) 

Vulnerability  F=.279, 
p=.600 

F=.110, 
p=.742 

F=.964, 
p=.335 

 F=.422, 
p=.521 

 

Cingulate       

Centrality  F=2.26,  

p= .140 

F=.837, 
p=.365 

F=6.83, 
p=.015 *  

q=.039 

(M>F) 

F=6.82, 
p=.015 *  

q=.039 

(F>M) 

Path Length F=.029, 
p=.866 

F=1.80, 
p=.186 

F=12.03, 
p=.002 **  

q=.009 

(F>M) 

F=13.33, 
p=.001 **  

q=.009 

(F>M) 

Vulnerability  F=1.26, 
p=.268 

F=1.46, 
p=.234 

F=7.07, 
p=.013 *  

q=.039 

(F>M) 

F=4.74, 
p=.039 * 

q=.078 

(F>M) 

Temporal       

Centrality  F=.003, 
p=.957 

F=.750, 
p=.391 

F=.197, 
p=.661 

 F=.103, 
p=.751 

 

Path Length F=.024, 
p=.877 

F=.127, 
p=.723 

F=2.78, 
p=.107 

 F=5.55, 
p=.026 * 

q=.059 

(F>M) 

Vulnerability  F=.011, 
p=.918 

F=1.26, 
p=.268 

F=.617, 
p=.439 

 F=.056, 
p=.815 

 

Gamma=normalized clustering coeffificent; Lambda=normalized path length; Eglobal=global efficiency. 
*significant at 5% level; **significant at 1% level. Items in bold remain significant after FDR correction (q<.3).  
FDR correction was applied to the 18 comparisons of local metrics for the HOA; andseparately for the 18 
comparisons of local metrics for the LLD group. 
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Supplementary Table 2: Mean and Standard Deviations for Global Measures by Group: ANCOVA 

controlling for age and sex; Correlations with age controlling for sex.  

 Mean (SD) ANCOVA (df=1,72) ± Correlation with age 
controlling for sex 

 HOA LLD  HOA (df=45) LLD (df=25) 

Gamma 2.37 (.252) 2.40 (.202) F=.213, p=.646 r=.017, p=.912 r=.166, p=.409 

Lambda 1.22 (.152) 1.20 (.093) F=.038, p=.847 r=.130, p=.385 r=.220, p=.271 

Eglobal 138.68 
(26.15) 

144.97 
(41.46) 

F=.322, p=.572 r=-.151, p=.311 r=-.170, p=.395 

N 48 28    

Gamma=normalized clustering coefficient; Lambda=normalized path length; Eglobal=global efficiency. ± Partial 

correlation controlling for sex.  
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Figure Labels: 

 

Figure 1: Description of graph theory metrics.  

 

 

 

 


