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1 Introduction

Music psychology as a discipline has its origins at the end of the 19th century
and ever since then, empirical methods have been a core part in this field of
research. While its experimental and analytical methods have mainly been related
to methodology employed in general psychology, several statistical techniques have
emerged over the course of the past century being specific for empirical research
in music psychology. These core methods have been described in a few didactic
and summarising publications at several stages of the discipline’s history (see e.g.
Wundt, 1882; Böttcher & Kerner, 1978; Windsor, 2001, or Beran, 2004 for a
very technical overview), and these publications have been valuable resources to
students and researchers alike. In contrast to these texts with a rather didactical
focus, the objective of this chapter is to provide an overview of a range of novel
statistical techniques that have been employed in recent years in music psychology
research.1 This overview will give enough insight into each technique as such. The
interested reader will then have to turn to the original publications, to obtain a
more in-depth knowledge of the details related to maths and the field of application.

Empirical research into auditory perception and the psychology of music might
have its beginnings in the opening of the psychological laboratory by Wilhelm
Wundt in Leipzig in 1879 where experiments on human perception were conducted,
and standards for empirical research and analysis were developed. From the early
stages until today, the psychology of music followed largely the topics and trends of

1This paper has also been inspired by conversations with Albrecht Schneider in the context of
jointly taught seminars on Advanced Statistical Techniques in Music Psychology at the Hamburg
Institute of Musicology. On these occasions, Albrecht Schneider repeatedly mentioned that it
was about time to write an update of the standard textbook Methoden in der Musikpsychologie

by Böttcher and Kerner (1978). While this paper can hardly be considered a didactical text
nor does it describe a firm canon of modern and frequently methods in music psychology, it still
might convey an impression of how such an update might look like (if one actually was to write
one).
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general psychology, each time with a considerable time lag, including psychophysics
(psychoacoustics), Gestalt psychology, individual differences, cognitive psychology,
and computer modelling. Each field of research is associated with a canon of
empirical and statistical methods which are shared among the research community.

In this chapter we will highlight a few selected statistical methods used in
more recent empirical studies which might indicate new trends for the analysis
of psycho-musicological data. We focus on two fields of research: first, cognitive
music psychology, and second, computer models of musical structure with psycho-
logical constraints and mechanisms as core parts of the models. The distinction
between these two areas is somewhat arbitrary, and is made on the pragmatic
grounds that studies in the cognitive psychology of music mainly aim at explain-
ing experimental data from human subjects whereas in computer modelling the
music itself is taken as the data that is to be explained. Due to space limitations
we will not cover adjacent areas such as the neurosciences of music, music infor-
mation retrieval, or individual differences (including tests of musical ability). As
an engineering science, music information retrieval (e.g. Orio, 2006) has devel-
oped a vast arsenal of sophisticated statistical and machine learning techniques,
although it has been lamented (e.g. Flexer, 2006) that proper statistical evaluation
of algorithms and techniques is often under-represented in this field. Individual
differences and personality psychology naturally have a strong connection to test
construction and measurement theory, while methods of statistical evaluation in
the neuropsychology of music tend to be similar to those in cognitive music psy-
chology, and thus can be considered as being partly covered in this short review.
Inspired by neuroscience research is the deployment of artificial neural networks
to model cognitive music systems or experimental data. However, the large body
of literature describing the use of artificial neural networks in music psychology
(see Bharucha, 1987; Desain & Honing, 1992; Tillmann et al., 2003) is beyond the
scope of this review.

2 Cognitive psychology of music

2.1 The standard repertoire

Cognitive psychology of music traditionally explains music perception and music
related behaviour in terms of mental mechanisms and concepts, such as memory,
affects, mental processes, and mental representations. While mental mechanisms
and concepts are usually unobservable, it is possible to generate hypotheses about
empirically evident phenomena from the assumptions and specifications that the
cognitive concepts imply. Therefore, a large amount of empirical work uses infer-
ential statistics to test the validity of cognitive models and their parameters. Stan-
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dard techniques comprise procedures for univariate comparisons between groups,
mainly in their parametric version (uni- and multi-factorial ANOVAs, t-test etc.)
and, to a lesser degree, include also robust techniques such as rank-based tests.
For relating one dependent to several independent variables on an interval level
of measurement, linear regression is a popular statistical method (e.g. Eerola et
al., 2002; Cuddy & Lunney, 1995), although rigorous evaluation of the predictive
power of the resulting regression models is seldom undertaken. Bivariate cor-
relation, frequency association measures (χ2), and descriptive statistics are also
commonly employed to arrive at an understanding of the relationships between
a number of predictors and one dependent variable (a simultaneous analysis of
several dependent variables is possible but unusual).

In summary, the main concern of a large number of empirical psychomusicolog-
ical studies is to identify one or more important (i.e. significant) determinants for
cognitive behaviour as measured by a dependent variable. However, the amount
of noise in the linear model is usually of less concern. That is, low R2 values in
regression models are not really a matter of concern, and generally little thought
is invested in alternative loss functions or measures of model accuracy. Thus, the
focus has been mainly on hypothesis testing rather than on statistical modelling.
The beneficial side of this ‘statistical conservatism’ in music psychology is that
experimental data and results can be easily compared, exchanged, and replicated.
But at the same time, the reluctance to explore the variety of statistical modelling
techniques available nowadays for many specific analysis situations, might leave in-
teresting information in some experimental datasets uncovered. A review of these
quasi-canonical methods directed at music researchers can be found in Windsor
(2001).

For exploratory purposes, data reduction and scaling techniques, such as prin-
cipal component analysis and multi-dimensional scaling (MDS), have frequently
been used in music cognition studies. Examples include the semantic differential as
a technique of data collection along with subsequent factor analysis introduced to
German music psychology by Reinecke in the 1960s (see Böttcher & Kerner, 1978,
for an overview). Principal component analysis has also been used more recently
to simplify cognitive models, such as models for melodic expectation (Schellenberg,
1997).

2.2 Current models of multidimensional scaling

Multidimensional scaling has mainly been used as a means to reveal and visualise
unobservable cognitive or judgemental dimensions that are of importance in a
specific domain, such as tonal or harmonic relationships (Krumhansl & Kessler,
1982; Bharucha & Krumhansl, 1983), timbre similarity (Kendall & Carterette,
1991, Markuse & Schneider, 1996), or stylistic judgements (Gromko, 1993). In
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general, experiments start from similarity judgements that N subjects make about
PJ =

(

n

2

)

unordered pairs out of J auditory stimuli and aim at positioning the
J auditory stimuli in a low-dimensional space with R dimensions where R �
P . The R dimensions are then often interpreted as perceptual dimensions that
govern human similarity perception and categorisation. Classical MDS algorithms
position the judged objects in an Euclidean space where the distance, djj′ between
the stimuli j and j′ is given by

djj′ =

[

R
∑

r=1

(xjr − xj′r)
2

]

1

2

where xjr is the coordinate of musical stimulus j on the (perceptual) dimension r.
Since the Euclidean model cannot reflect differences between different sources of
judgements, subjects’ individual judgements are often aggregated before classical
MDS solutions are computed. To accommodate individual differences between
subjects, Carroll and Chang (1970) proposed the INDSCAL model where a weight
wnr is introduced that reflects the importance of the perceptual dimension r for
subject n (n = 1, · · · , N)

djj′ =

[

R
∑

r=1

wnr(xjr − xj′r)
2

]

1

2

with wnr ≥ 0.
The INDSCAL model removes rotational invariance and makes the MDS model

easier to interpret since the potentially many rotational variants of a given model
do not have to be considered for interpretation any more. In turn, it generates
N × R weight parameters wnr for every combination of subjects and dimensions.
However, these parameters are only of marginal interest if the goal of the inves-
tigation is to discover perceptual dimensions that are generalisable to a larger
population of listeners. A very interesting extension of the classical MDS model
was proposed by Winsberg and De Soete (1993), labelled CLASCAL. In CLAS-
CAL models, the numerous separate parameters for every combination of subject
and dimension, are replaced by so-called latent classes T which reflect types of
subjects’ judgemental behaviour. Since the number of latent classes is assumed to
be much lower than the number of subjects N , considerably fewer weights wtr for
the combinations of dimensions and latent classes have to be estimated than in
the INDSCAL model. The CLASCAL model by Winsberg and De Soete (1993) is
given by
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djj′t =

[

R
∑

r=1

wtr(xjr − xj′r)
2

]

1

2

where wtr is the weight for the latent class t with respect to dimension r. The
concept of latent classes that group together subjects with similar judgemental be-
haviour can potentially be very useful for future research in music psychology when
researchers want to explicitly allow for the possibility that subjects perceive and
judge musical stimuli differently, but where a notion of wrong or right perceptions
or judgements does not apply. Divergent judgements of musical or aesthetic ob-
jects in general might be caused by differences in subjects’ musical backgrounds,
their degree of specialisation and familiarisation with certain musical styles, or
simply by their taste.2

The latent class approach seems to be a good compromise between the re-
ductionist approach of just considering the mean of human judgements on the
one hand, and models that require one or more parameter value for each subject
(e.g. the INDSCAL model) on the other hand, yielding results that are hard to
generalise. The latent class approach is also consistent with the general assump-
tion that there are equally valid but substantially different ways to judge musical
objects that, however, for a homogeneous population of listeners are limited in
number. For demonstration purposes, we turn to timbre perception as the study
area. Here, a number of publications make use of an extended CLASCAL model
as the statistical method. The extended model is given by

djj′t =

[

R
∑

r=1

wtr(xjr − xj′r)
2 + νt(sj + sj′)

]

1

2

where sj and sj′ are coordinates on dimensions that are specific to the objects
j and j′, i.e. not shared with other objects. The parameter νt is the weight a
latent class gives to the whole set of specific dimensions. It reflects how much a
perceptual strategy uses common and general perceptual dimensions to compare
musical objects or how much it attends to the specificities of each musical stimulus.
McAdams, Winsberg, Donnadieu, De Soete, and Krimphoff (1995) applied this ex-
tended CLASCAL model to 153 pairwise comparisons of 18 instrument timbres as
obtained from judgments by 88 subjects with different degrees of musical training.
The authors found five different latent classes of judgmental behaviour and ob-
tained a three-dimensional model with instrument-specific dimensions. These five
latent classes were only very partially explained by the amount of musical training

2It is not surprising that latent class models have been quite popular in food science where
subjects’ judgements in sensometric experiments are usually not regarded as being right or wrong
but simply as different from one another (Sahmer, Vigneau, & Qannari, 2006)
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subjects had received. Instead it seems likely, that the latent classes reflect dif-
ferent judgemental behaviour in terms of the perceptual dimensions attended to.
McAdams et al. (1995) were able to correlate the three dimensions of their model
very closely with three different acoustic parameters previously investigated by
Krimphoff, McAdams, and Winsberg (1994), namely log-attack time, the spectral
centroid, and spectral flux. They also suggested some distinguishing character-
istics that could be aligned to the specificities of each instrument, for example
the hollow timbre of the clarinet or the very sharp, pinched offset with clunk of
the harpsichord. These examples show the point of employing an MDS model to
specificities: The sharp pinched sound of a harpsichord is only at a very abstract
level comparable to the hollow timbre of a clarinet, but when the clunk is present
in a sound it can be a very important factor for timbre perception. A more recent
study by Caclin, McAdams, Smith, and Winsberg (2005), employing the recent
CONSCAL model, confirmed the close relations between perceptual dimensions
and attack time, spectral centroid, and spectral flux, and also discovered the sig-
nificant role of the attenuation of even harmonics. The work on scaling techniques
and their application to timbre perception is on-going (see Burgoyne & McAdams,
2007), and it might generate some interesting results on individual perceptual
differences between different groups of subjects along with models describing the
different perceptual strategies.

2.3 Classification and regression trees

For a long time classification and regression trees have been part of the tools and
techniques for general data mining and machine learning. However, there have
been only a few studies in music psychology that make use of the inherent advan-
tages of these models as we shall see below. Although various software packages
for statistical computing (SPSS, SAS, Statistica, R) have implemented several dif-
ferent but related models and algorithms (e.g. CHAID, ID3, C4.5, CART), we
just take two studies as examples that both make use of the CART algorithm as
implemented in R.

Classification and regression trees partition observations into categories along
a dependent variable y by using the information in the set of independent variables
X. The goal is to arrive at a robust model that enables us to predict the value
of y given the values for X in a future case. Tree models belong to the area
of supervised learning which means that they learn from complete datasets that
contain a sufficiently large number of cases with given values for y and X. The
models are visualised in a very straight-forward manner as tree structures where
nodes represent subsets of the original dataset and branches lead from one subset of
the data to two subsets at the next lower level. The first node contains the original
dataset. It is called root, and the algorithm starts here by recursively partitioning
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the dataset into smaller and smaller subsets. Figure 1 gives an example of the
visualisation of a tree model. The example is taken from a recent study on melodic
accent perception (?, ?) where tree models are employed to predict the perceptual
accent strengths of individual notes in a melody on the basis of a large set of rules,
mainly derived from Gestalt laws.

For the construction of a classification or regression tree one has to decide on
three questions (see Breiman et al., 1984):

1. When and how should a node be split into two subnodes?

2. When is a node an end node that should not be split any further? In other
words, how should the size and complexity of the tree be determined?

3. How should the end nodes (leaves) be labelled, i.e. how does the tree make
predictions?

The first two questions rely on measures of the classification or regression ac-
curacy of the tree as a whole. They decide on the question whether or not the
classification accuracy of the dataset as a whole is better if a node is split into two
subnodes. For classification trees where the dependent variable y is categorical,
the Gini-Index is a widely used measure. It is defined as

I(t) =
∑

j 6=i

p(i|t)p(j|t)

where I(t) denotes the impurity of the observations in a node and p(i|t) is the
probability for a random observation t to be assigned to class i. By recursively
splitting the tree into subbranches, the algorithm seeks to minimise the Gini-Index.
For interval-scale-dependent variables, the so-called ANOVA criterion is generally
employed for splitting a node. This criterion is defined as SSK−(SSL+SSR) where
SSK =

∑

(yi− y)2 and SSL and SSR are the sum of the squared differences in the
left and right subnode. The ANOVA criterion is sought to be maximised in such a
way that at each node with each independent variable x the partitioning algorithm
tests whether the accuracy criterion can be improved by splitting the data into
two subnodes according to all potential values of x. Where the improvement in the
criterion is largest, the value of x is then chosen as the splitting or decision value.
The recursive partitioning into smaller and smaller subnodes is carried out until
the endnodes (leaves) only contain a minimal number of observations. However,
in order to generate a stable tree that is not overfitted on the learning dataset, the
full tree has to be pruned subsequently. In other words, only true relations between
dependent and independent variables should be reflected in the tree model. This
is achieved by using the so-called cross-validation method. Cross-validation uses
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Figure 1: Regression tree model from Müllensiefen et al. (under review). The
graph reads from top to bottom. Observations (here: notes of a melody) are
recursively partitioned into smaller subsets by binary splits at each node. All
observations satisfying the splitting criterion (i.e. answering ‘yes’ to question in
box) are gathered together in the child node to the right and all observations
not satisfying the condition form the subset represented by the child node to the
left. The end nodes at the bottom of the graph contain prediction values (here:
perceptual accent strength on a scale from 0 to 1) for all observations classified by
the sequence of binary conditions in the same way, from the root to the end node.

8



the information from a larger portion of the data to build a tree model which then
predicts the observations of a smaller data subset. The classification error of the
cross-validated tree model is usually getting smaller as the tree model increases in
complexity (i.e. it has more nodes). However, from a certain degree of complexity,
the cross-validation error arrives at a plateau or even increases with increasing
complexity. Therefore, Therneau and Atkinson (1997) suggest a good balance
between partitioning accuracy and tree complexity so that tree stability is reached
when the cross-validation error has reached its plateau.

As an example, Müllensiefen and Hennig (2006) use classification and regres-
sion trees among other techniques from the data mining repertory (including ran-
dom forests, linear and ordinal regression, and k -nearest neighbour) to explain the
participants’ responses in a music memory task. The task consisted of spotting
differences between a target melody in its musical context and an isolated com-
parison melody, similar or identical to the context melody. The study aimed at
identifying the factors that determine recognition memory for new melodies and
tunes (see also exp. 2 from Müllensiefen, 2004). As the most important predictors
for explaining these memory recognition judgements, the overall melodic similar-
ity, and the similarity of the melodic accent structures, as well as the subjects’
musical activity were identified.

Another example for the application of classification and regression trees is a
study by Kopiez, Weihs, Ligges, and Lee (2006) where the authors try to predict
performance in a sight reading task. The predictor (independent) variables in this
study include general and elementary cognitive skills as measured by standard
psychological tests, as well as practice-related skills and the amount of time in-
vested in musical activities. For classifying 52 subjects into good and bad sight
readers, linear discriminant analysis gave slightly better results than a classifica-
tion tree from the CART family. Among the most important factors to predict
high achievements in the sight reading task were the subjects’ speed at playing
trills, their mental speed as measured by a number connection test, and the time
invested in sight reading before the age of 15.

Taken together, both application examples show that classification and regres-
sion trees are only one out of a larger number of statistical techniques that may
be used as classification or prediction models, although tree models might not
necessarily deliver the most accurate prediction results. Nonetheless, they have
a few particular advantages that seem to fit circumstances well in many music
psychology experiments. Among these advantages are:

1. If many independent variables can be assumed to influence the dependent
variable under study, selection mechanisms become quite important to iden-
tify the variables with most explanatory power. Two mechanisms already
built into tree models serve this need for variable selection., which are, first,
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recursive partitioning by the variables that provide the largest increase in
the accuracy criterion, and second, tree pruning as such.

2. In data sets from music psychology experiments, predictor variables (e.g.
variables on musical background) often have missing values for some ob-
servations (subjects), and the concept of surrogate predictor variables (not
explained here due to space limitations) copes easily with these cases.

3. In many cases, higher-order interactions between several predictor variables
cannot be ruled out from the model a priori. Tree models represent these
interaction terms very effectively. In fact, tree models might be regarded as
models of variable interactions only, mainly ignoring additive effects that are
better modelled by linear models.

4. Non-linear relationships between the dependent and one or more independent
variables can be accommodated for in tree models, while linear models, by
definition, are rather poor at modelling non-linear relationships.

5. Tree models make only few assumptions regarding the distribution of the
data which is in contrast to many linear models that rely, for example, on
the normal distribution of the residuals.

6. The option to visualise tree models as graphs that even non-scientists can
understand by intuition, yields the potential to popularise and communicate
research results beyond a circle of experts.

It quite likely that these advantages make tree models an attractive tool for
music psychologists in the future, especially in comparison with linear models that
are currently by far more popular in this study area.

2.4 Functional data analysis

Given that music is a time-dependent domain and music cognition presumably
evolves in time as well, it is surprising how few studies in the field of music cognition
make explicit use of time related information in their statistical analysis (for a
notable exception see the study of continuous emotional responses during music
listening based on time series analysis by Schubert and Dunsmuir (1999)).

Functional data analysis (FDA) is a relatively new statistical concept that
is particularly well-suited to represent and analyse how musical parameters or
observed human reactions to music evolve over time. A functional datum is not
a single observation but a set of measurements along the time axis that can be
regarded as a single entity (see Levitin et al., 2007). This means that in FDA,
observations are curves of random functions and not values of random variables.
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Even though data are only sampled at discrete interval steps along a continuum,
the aim of FDA is to express the variation in the variable of interest as a function
of a continuous variable, most commonly time. Thus, FDA provides the ability to
quantify the dynamics of the variable under study.

A typical FDA runs through a series of steps which we here describe very briefly
following the detailed explanations in Ramsay and Silverman (2005); Levitin et al.
(2007).

1. Data gathering The raw values of the dependent variable yj are recorded
at j discrete points of the continuous variable tj with j = 1, ·, n. For appli-
cations in music research the continuous variable is most commonly time. A
single functional observation comprises n tuples (tj , yj). If replications of the
functional process are recorded (e.g. by testing several subjects), the index
i is used to refer to the different replications, and tuples are double indexed
(tij , yij).

2. Smoothing and interpolation FDA assumes that raw data yj are gen-
erated by a latent underlying process that is best represented by a smooth
and continuous curve. The underlying process is denoted by x(tj) and its
relation to the observable data is described by adding a noise or error term
εj :

yj = x(tj) + εj

One of the differences between FDA and many other statistical methods is
that FDA does not assume that the error term is independently distributed
over observations, nor that it has a mean of zero and a constant variance
of σ2. In fact, for many biological and psychological processes (e.g. blood
pressure, heart rate, emotional arousal, strength of subjective mood), errors
for close-in-time observations might be correlated, although they might differ
systematically at distant points in time. x(tj) is obtained by fitting a set of
so-called basis functions φk to the raw data. x(t) is then represented by the
sum of the basis functions φk weighted by their corresponding coefficients ck:

x(t) =
K
∑

k=1

ckφk(t)

There are many candidates for suitable basis functions, including the Fourier
series, wavelets, local polynomial regression, and B-splines (e.g. Schumaker,
1981). The choice of a particular type of function for a given dataset depends
on whether a function is good at reflecting the noise generating process so
that a low number k for functions and coefficients is sufficient to represent
these data.
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3. Aligning the smooth data of the i replications For this processing step,
data from the performance of the same piece of music by different musicians
and at different tempos can be taken. If differences between replications (e.g.
subjects) are not of interest, data can be averaged at this stage.

4. Displaying the main dynamic characteristics of the data For this
processing step, smoothed data are differentiated. In fact, one main reason
for smoothing the data in FDA is to use differential equations as models.
A very popular way to display the evolution of the underlying process in
time is to plot the first and second derivatives against each other to make
the evolution of slowness or acceleration of the variables under study visible.
This yields the so-called phase-plane plot.

5. Modelling the aligned data Within the tool set of functional analysis,
there are many adaptions of standard statistical techniques available. These
include functional principal component analysis and functional linear mod-
elling. Just to give a simple example of a functional variant, we consider
the simple case of a functional linear model where the dependent variable is
functional but independent variables are not. The functional linear model
describing all replications i is defined as

yi(t) =
J
∑

j=1

βj(t)xij + εi(t)

where the regression coefficients βj(t) are functions of time. For modelling
the aligned data, linear models where functional dependent variables are
predicted by a set of functional independent variables are also possible, and
the reader is referred to Ramsay and Silverman (2005).

Up to now only a few studies have been published in music psychology using
FDA to cover very different topics. Vines, Nuzzo, and Levitin (2005) and Vines,
Krumhansl, Wanderley, and Levitin (2006) use functional data analysis to study
perceived tension during music perception. In their experiment, musical tension
is measured continuously in musically trained participants who operate a slider
device when three different conditions are given, a) when listening to an excerpt
of Stravinsky’s second piece for clarinet solo, b) when listening and watching a
clarinettist play the piece, and c) when only watching the video. The data of the
continuous slider are sampled at high frequency, and the resulting curve is fitted
by a large number of 6th order B-splines. As one result of the functional data
analysis, Vines et al. present phase-plane plots (see Figure 2).

By analogy with well-known concepts in physics, they analyse the participants
behaviour in terms of emotional kinetic and potential energy and show that the
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Figure 2: Phase-plane plots from Vines et al. (2005) illustrating the evolution of
affective tension over time. Affective Velocity, x axis, is plotted against Affective
Acceleration, y axis. The integers denote different points in time of the piece as
measured in seconds from the beginning. Panel 6.1 shows affective tension from
the auditory-only condition, panel 6.2 gives tension during visual presentation,
and panel 6.3 shows perceived tension from the audio-visual condition.

evolving emotional experience over time relates roughly to specific events in the
compositional structure of the piece. They found that the additional visual infor-
mation served different purposes at different points in listening. For some passages
it reduced the amount of perceived tension while at other instances it increased
tension experience. For mere visual presentation they recorded a much lower flow
of affective energy. However, the authors found that additional visual information
helped subjects understand the performer’s phrasing and to anticipate changes
in emotional content. Tension perception was clearly influenced by the phase-
advanced visual information in the audio-visual condition. Vines et al. (2006)
conclude that there might be emergent perceptual qualities when music is both
heard and seen.

Almansa and Delicado (2009 (in press)) apply FDA to a quite different set
of data. Instead of investigating perception, they look at tempo variations in
28 different performances of Robert Schumann’s Träumerei. The data were col-
lected by Repp (1992) and consist of a 28X253 matrix with rows corresponding to
performances and columns corresponding to the 253 crotchets of the piece. The
measurements reflect tone duration in milliseconds for each crotchet. Almansa
and Delicado (2009, in press) use local polynomial regression to smooth the data
and then align the data of the 28 performances by score time. The authors then
perform a functional principal component analysis (fPCA) on the smoothed tempo
data and find a number of meaningful components that lend themselves readily to
musical interpretations. Among the components that explain most of the variance
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in the data are size, ritardando, contrast, as well as a period-wise component. The
size component reflects the global tempo, the ritardando component describes the
differences between the global tempo and the final ritardando, while the contrast
component compares the faster performances of phrases A and B in opposition to
a stronger slowing down at the end of phrase B and the final fermata. The period-
wise component describes the generally slower tempo in the middle of phrases A,
B, and A’ in contrast to faster tempo at the end of the phrases. As a last step,
Almansa and Delicado (2009 (in press)) apply a hierarchical cluster analysis to the
performance data after analysis with fPCA. They arrive at a clustering solution
with four clusters comprising five to eight performances that can be considered sim-
ilar to each other in terms of the functional principal components. Accordingly,
the approach to combine fPCA with subsequent clustering might be a suitable
general and robust method to compare and classify the structure of musical per-
formances despite superficial differences. If, for example, global tempo is not of
interest, the first component could be left out and classification could be based on
the remaining components reflecting more subtle usages of musical tempo. This
approach is general enough that, apart from tempo, other parameters like perfor-
mance, loudness, or timbre register could be used for comparison and modelled in
a functional way.

In general, FDA opens up a range of perspectives for music analysis, since
music is a time-dependent phenomenon and many musical parameters as well as
human reactions to music can be assumed to change continuously during listening.
However, an important requirement is the availability of large sets of data. This
makes FDA particularly useful for the analysis of audio performance data sampled
at high rates, and also of neuronal data recorded with techniques of high temporal
resolution such as EEG, ERPs, and MEG.

2.5 Bayesian models of music perception

Bayesian reasoning and probabilistic models have received a lot of attention in
cognitive psychology for quite a while now (e.g. Chater et al., 2006; Chater &
Manning, 2006). But for some unclear reason, application of these ideas in music
research has been rather sporadic, even though scholars since Meyer (1957) have
noted that many concepts in music might lend themselves naturally to a formula-
tion in probability theory. Bayesian modelling constitutes a framework for reason-
ing with uncertainty. According to Chater and Oaksford (2007) this framework
can be applied to two different realms of psychological research. First, Bayesian
models can model scientific datasets that stem from psychological experiments or
observations. Here, and in contrast to traditional statistical techniques from the
Nyman-Pearson or the Fisher school, Bayesian models quantify the researcher’s
prior beliefs, assumptions, and uncertain knowledge, and take this external infor-
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mation into account when comparing different models of the experimental data.
Bayesian models therefore represent an alternative to the hypothesis testing ap-
proach that has been dominating empirical psychology. Second, Bayesian models
are not only an alternative rational way to experimentally analyse data, they
can also serve as models of cognition whenever the human mind is regarded as a
Bayesian reasoning system. This way, prior beliefs and knowledge of participants
can be modelled along with stimulus data subjects might be presented with dur-
ing a perception experiment. The observed experimental responses can then be
modelled via Bayes’ theorem. Bayes’ theorem can be deduced from the axioms
of basic probability theory and is expressed in terms of conditional probabilities.
The notation of the conditional probability P (A|B) denotes the probability of A

being true, given that B is true. Bayes’ theorem is defined as follows:

P (A|B) =
P (B|A)P (A)

P (B)

To give an example of how this equation might serve as a cognitive model in
music research, we might imagine an experimental task like the one described in
Lippens, Martens, De Mulder, and Tzanetakis (2004) where subjects are asked to
name the musical genres after hearing excerpts of pop music pieces. Let us denote
genre labels by A and perceived musical characteristics by B. According to the
Bayesian model subjects would give the musical genres a label with the highest
probability given the musical characteristics just perceived, i.e. a label with high-
est posterior probability maximises P (A|B). According to the Bayesian model,
subjects make use of their knowledge about the conditional probability P (B|A)
resulting from the musical characteristics B in music from genre A (e.g. distorted
guitars in heavy metal songs). Subjects would also make use of their prior belief
P (A) of how likely it is that songs from genre A are actually occurring as test stim-
uli in a psychological experiment. P (A) is also called the prior probability or just
prior. Finally, P (B), which is the general probability of the musical characteristics
(e.g. distorted guitars) just heard, is taken into account.

While Bayesian modelling of musical genre perception is an interesting thought
experiment, and an empirical study still has to be carried out, a highly interesting
application of Bayesian modelling is provided by Sadakata and colleagues (2006).
The authors provide a meta-study of human rhythm perception and production.
The starting point is the apparent psychological asymmetry between performance
and perception of musical rhythms. While for the perceptual dimension, dura-
tion changes between subsequent notes tend to be emphasised, the inequality in
the durations of subsequent notes tends to be assimilated in rhythm production.
Sadakata et al. (2006) use existing data from four different studies on rhythm
production and perception. Their goal is to model the perceptual data on the
basis of the production data using Bayes theorem. In particular, they model the
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posterior probability P (c|t) that denotes the probability that subjects perceive the
rhythmic class of two successive notes c given that they are aurally presented with
time ratio t, i.e. the ratio of the inter-onset intervals of two consecutive notes as
measured in milliseconds. The rhythmic class c essentially represents how long
the first note is in comparison to the second one (e.g. equal duration values or
punctuated rhythms). Inserted into Bayes’ equation their model looks like this:

P (c|t) =
P (t|c)P (c)

P (t)

As estimates for the conditional probability P (t|c), meaning that a time ra-
tio t in milliseconds is produced given a rhythm class c, Sadakata et al. (2006)
use the data from their rhythm production experiments. For estimating the pri-
ors, they use three different sources: a uniform distribution where priors for all
rhythm classes c are equal, a theoretical rhythm complexity model derived from the
Farey tree (Peper et al., 1995), and a distribution derived from frequency counts
of rhythms in three different music corpora. They also looked at how perceived
rhythm classes were predicted just by the conditional probability P (t|c) alone, i.e.
without using any priors. Just for the sake of comparison they also produced a
model where optimal priors were obtained by fitting the production data to the
perceptual data. As expected, their results showed that the no-prior model always
gave the worst predictions, while the optimal priors model was in all cases supe-
rior to all other models. Apart from these trivial results Sadakata, Desain, and
Honing (2006) found that the priors that made use of information from the Farey
tree or from the music corpora generally outperformed the model with uniform
priors. This result neatly shows how the incorporation of quantified prior musical
knowledge into models of music perception can greatly enhance model accuracy.
This point is also made by Müllensiefen, Wiggins, and Lewis (2008) who endorse
the concept of corpus-based musicology, i.e. the idea of using musical knowledge
as extracted from large music corpora to enhance the predictive power of models
of music perception. The meta-study by Sadakata et al. (2006) implicitly makes
another important point in that it shows that even in psychological studies that
sometimes use only vaguely music-like stimuli, participants seem to relate these
stimuli to prior musical experience and perceive them on these grounds. In general,
Bayesian analysis provides a useful and straightforward framework for incorporat-
ing beliefs, assumptions, as well as prior musical knowledge as possessed by either
the experimenter or the experimental participants into the statistical analysis of
experimental results. This means also that the access to relevant and meaningful
prior knowledge is all-important. Indeed, the biggest advantages of Bayesian mod-
elling come into play when musical knowledge is quantifiable and is also assumed
to influence reactions and decisions in an experimental task.
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3 Music Modelling

The distinction between research in cognitive music psychology and what we call
music modelling is admittedly not very clear-cut and sometimes simply a matter of
perspective. While the studies reviewed in the last section are primarily interested
in mental processes connected to music perception and cognition by observing
human behaviour that reflects these mental processes, the studies that we now
look at rather try to describe the structure of music itself statistically. Of course,
descriptions and representations of musical structure are always a result of human
cognition, but studies of music modelling tend to be less interested in the nature
of the underlying psychological processes that generate musical structures than in
the structures themselves.

Modelling music data has become increasingly popular in recent times, due
largely to the increasing amount of music that is digitally available in a symbolic
encoding format (e.g. MIDI, EsAC, kern, or other codes that encode notes as
the basic musical events). While statistical approaches for describing the compo-
sitional structure of music have been present since the 1950s (e.g. Meyer, 1957;
Moles, 1958; Steinbeck, 1982; Fucks, 1962; Fucks & Lauter, 1965; Fucks, 1968), the
number and diversity of statistical approaches for modelling structural features of
music have rocketed over the last decade.

3.1 Bayesian models of musical structure

Also for describing musical structures, Bayesian modelling has become quite pop-
ular (e.g., Temperley, 2004, 2006, 2007; Rhodes et al., 2007). As an example, we
take Temperley’s description of a Bayesian model that determines the key of a
given piece or segment of music (Temperley, 2004). At its core we find Bayes’ rule
that calculates the probability of a musical feature or structure (here: the key)
given an empirical music surface (here: the frequencies of pitch classes in a musical
segment).

P (key structure | surface) ∝
∏

segment

(

M
∏

p

Kpc

∏

∼p

(1 − Kpc)

)

Here, M is a modulation score that penalises the change in key from one segment
to the next and Kpc stands for the key-profile values of the pitch-classes present
(p) in a segment which are multiplied by the product of (1 − Kpc) for all pitch-
classes not present in this segment (∼ p). Thus, the probability computation for
musical keys, given the pitch classes of a musical piece, is based on the relative
frequency with which the twelve scale degrees appear in a key as well as on the
probability of a subsequent segment of the piece being in the same key as the
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previous segment. Comparable to the testing of different priors as in the study by
Sadakata et al. (2006), Temperley uses pitch-class profiles derived from different
sources (music collections or corpora). Tested against other key finding models
like his own non-Bayesian model (Temperley, 2001) or the Krumhansl-Schmuckler
algorithm (Krumhansl, 1990), his Bayesian model achieves about equal success
rates, although, as Temperley openly admits, most of the core features of the
model may be formulated without Bayesian terminology and notation. Reviewing
his recent book (Pearce et al., 2007) on probabilistic models and music (Temperley,
2007), it seems that Temperley has not yet made full use of the potential that the
Bayesian approach can offer for modelling musical structures. It appears that
Bayesian modelling in this sense is largely concerned with precisely quantifying
rule-based systems of musical analysis. Therefore, it remains to be seen what the
original Bayesian contribution to these kinds of musical models will be, considering
that frequency counts on musical elements have been successfully used as predictors
in non-Bayesian models before (e.g. Eerola et al., 2002; Costa et al., 2004).

3.2 n-gram models of musical structure

Another recent, prominent trend in music modelling is the use of Markov-chains
or n-gram modelling. Here, the basic musical units are longer sequence structures,
instead of single events such as pitches, intervals, or durations. This approach
builds on the basic assumption that music is principally produced and perceived
as a time-ordered set of events, be it tones of a melody or harmonies in a polyphonic
piece. The notion that music can be explained, taught, and analysed as formulae
has been around for several hundred years in music theory, but only due to the
recent availability of large electronic corpora can these hypotheses be empirically
tested.

A sophisticated example of the n-gram approach is the work of Pearce and
Wiggins (e.g. 2004, 2006) which is concerned with melodic n-grams. Their re-
search hypothesis is that many aspects of musical expectation are acquired through
spontaneous induction of sequential regularities in the music we are exposed to.
Consequently, they name their model the Information Dynamics of Music model,
or short the IDyoM model, and define it as a model of sequences ei composed of
symbols drawn from an alphabet E . The model estimates the conditional proba-
bility of an element at index i in the sequence, given the preceding elements in the
sequence: p(ei|e

i−1

1
). Given such a model, the degree to which an event appearing

in a melody is unexpected can be defined as the information content (MacKay,
2003), h(ei|e

i−1

1
), of the event, given the context:

h(ei|e
i−1

1
) = log

2

1

p(ei|e
i−1

1
)
.
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The information content can be interpreted as the contextual unexpectedness or
surprise associated with the event. The contextual uncertainty of the model’s
expectations in a given melodic context can be defined as the entropy (or average
information content) of the predictive context itself:

H(ei−1

1
) =

∑

ei∈E

p(ei|e
i−1

1
)h(ei|e

i−1

1
).

Just as in the Bayesian model reviewed above, this model builds on counts of
occurrences of melodic n-grams in a collection of melodies. For a given melodic
context, the model returns the continuation of chain of n-1 notes with maximum
likelihood as a prediction for the given context. Although the idea of recording
the frequencies of melodic n-grams in a corpus and returning the like for any given
context sounds quite straight forward, the details of their modelling are quite
intricate and consist of techniques adopted from statistical language learning and
data compression, which are outside the scope of what can be explained here
in detail. Pearce and Wiggins (2004) examine several model parameters, first,
the model type, where they find best results by employing a combination of a
long-term model trained on large corpora of melodies (e.g. the Essen folk song
collection, church hymns, ballads), and a short-term model trained exclusively
on the melody currently being predicted. Second, they place emphasis on the
treatment of novel n-grams when encountered in a prediction context for which
no frequency count yet exists in the model. Here, smoothing and escape heuristics
are explored from automatic speech processing. As a third and important model
parameter, they vary the upper order bound (maximal length) of the n-grams
considered. In combination with other parameters a variant yields optimal model
performance where the order of the n-gram is unbound but the relative weight
of a n-gram is adjusted according to its length, for the averaged prediction gives
more weight to longer n-grams. A fourth and decisive set of model parameters is
the type of abstraction or transformation to be applied to the raw melody data,
where they determine a handful of musically meaningful view points (i.e. musical
dimensions or parameters such as raw pitches, pitch intervals, note durations)
through a standard variable selection process (step-wise variable elimination).

As a result from this search through the parameter space, Pearce and Wiggins
(2006) are able to predict experimental data from three previous studies (Cuddy &
Lunney, 1995; ?, ?, ?) where expectation of melodic continuation was determined
from behavioural experiments with human listeners. Their model performs well
on all three data sets and outperforms a competing model proposed by Narmour
(1990) based on principles of Gestalt psychology (implemented by Schellenberg,
1997). Pearce and Wiggins’ reasoning (2006) regarding model selection is a notable
point of their approach and can serve as a guideline for other studies concerned with

19



the comparison of models for music cognition. As a criterion for model selection,
they do not only consider data fit, but also scope (which is the model’s failure to
predict random data), and simplicity (which is the number of prior assumptions
and principles the model builds upon).

Strong evidence in favour of the IDyoM model as a general model of melody
perception comes from a number of recent studies where the model was not used
for its original purpose (i.e. to predict melodic expectation), but was applied to
automatically segment full melodies into melodic phrases. The underlying ratio-
nale is that perceptual groups are associated with points of closure where the
ongoing cognitive process of expectation is disrupted either because the melodic
context fails to stimulate strong expectations for any particular continuation or
because the actual continuation is unexpected. For predicting the manual phrase
segmentations of 1705 folk songs from the Essen collection which were annotated
by expert folk song collectors, the IDyoM model performed at a comparable level
of accuracy to a couple of other computational models. The surprising result of this
study was the fact that IDyoM as a model of melodic expectation did almost as
well as existing models that were specifically designed for segmenting melodies (e.g.
Grouper, Temperley, 2001, and LBDM, Cambouropoulos, 2001) and make use of
high-level music theoretical knowledge about melody segmentation (see Pearce et
al., 2008). The fact that the model generates acceptable results outside its origi-
nal application domain let the authors hypothesise that mechanisms of statistical
learning which are the core of the IDyoM model, actually represent the underlying
processes of melody perception as well as the acquisition of musical knowledge.

4 Conclusion

This update intends to highlight some of the more interesting statistical approaches
as employed in recent music psychology research and aims at motivating music psy-
chologists to explore the analytical and epistemological possibilities that these new
techniques provide. Naturally, a short overview like this can only be far from com-
plete, both in terms of depth (of the mathematical technicalities and the design
of studies reviewed) as well as in terms of the range of new techniques covered.
Nonetheless, we hope that this paper serves as an overview of current trends so
that music psychologists might obtain an idea of where empirical methodology
is heading. Some final remarks have to be made on the available software that
allows to compute analyses using the methods described. Only if software is avail-
able and accessible as well as easy to handle, new statistical techniques have a
chance of becoming a popular research tool and will possibly be integrated into
the canon of methods. While in the past, music psychologists were often depen-
dent on a few specialised companies to integrate a new technique into commercial
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software packages such as SPSS, SAS, or Statistica with graphical user interfaces
(GUIs), the success of powerful and yet high-level programming languages that
are specially designed for data analysis or, at least, have large libraries designed
for scientific statistical computing, opens a new range of possibilities. The most
important of these very high-level data analysis environments are Weka3 (which
includes a GUI), Matlab4 (Statistics Toolbox ), R5, S-Plus6, and Python7(SciPy
and StatPy packages). Researchers and software developers around the globe con-
stantly contribute codes for new statistical analysis to these environments that
are then available to music psychologists who, in general, are not keen to imple-
ment new statistical procedures from scratch themselves. Apart from Matlab and
S-Plus, which require an expensive license for the basic system and commercial
toolboxes, the usage of the other aforementioned data analysis environments is
free.

Regarding the statistical techniques covered in this paper, general multidimen-
sional scaling packages, including INDSCAL, are implemented in most commer-
cial as well as free software programmes. Unfortunately, the discussed CLASCAL
model is not yet available in any larger environment. In contrast, classification and
regression trees (often called decision trees) have implementations in most environ-
ments. The studies cited above made use of the R-package CART. Functional data
analysis packages are maintained for Matlab, R, and S-Plus. For basic reasoning
with Bayes’ theorem, no special software is required. But there is a wealth of ad-
vanced Bayesian methods available that we did not cover here, since for almost all
software environments more or less comprehensive Bayesian packages or libraries
are obtainable. Finally, the IDyoM model is unfortunately not publicly available.
But many programmes provide the basic tools for sequence-based methods often
employed in computational linguistics (e.g. package tm in R, Clementine in SPSS
or KEA in Weka).
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